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ABSTRACT 

Several new methods have been developed to meet the critical and diversified 

challenges in the state-of-art unstructured-grids based high-order methods for 3D real-world 

applications, including 1) parameter-free high-order generalized moment limiter for arbitrary 

mesh; 2) efficient line implicit method; 3) efficient quadrature-free SV method; 4) novel 

high-order mesh generation method for 3D hexahedral mesh.  The parameter-free high-order 

generalized moment limiter does not need any user-specified free parameter to detect the 

discontinuities and exclude the smooth extrema.  The present limiter has been designed to be 

naturally generic, compact, and efficient, which can be applied for arbitrary mesh and general 

unstructured-grids based high-order methods.  The present low-storage line implicit BLU-

SGS method significantly overcomes the anisotropy stiffness due to highly stretched wall 

grids in high Reynolds number flows.  Up to 3 times of saving on CPU time and improved 

robustness have been demonstrated compared with the cell BLU-SGS solver.  This line 

implicit method preserves the favorable feature of high compactness from the cell BLU-SGS 

method, and can be programmed as a black box so as to be easily applied in general high-

order methods.  The quadrature-free SV method has improved the original SV method by 

replacing the large number of quadrature for face integrals in 3D case with many less nodal 

operations based on analytical shape functions.  Finally for high-order unstructured mesh 

generation, the present novel and fully automatic algorithm guarantee to resolve the self-

intersection problem for non-linear quadrilateral or hexahedral mesh with strong robustness.  

The algorithm also offers the advantage of correcting grid self-intersection without changing 

the basic aspect ratio of the original grids or degrading the original grid quality. 
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CHAPTER 1 INTRODUCTION 

Over the past three decades, we have witnessed that the frontier of Computational 

Fluid Dynamics (CFD) as a scientific and engineering discipline has been tremendously 

expanded along with its explosive market growth in industries such as aerospace, 

mechanical, chemical, and pharmaceutical engineering, etc.  This growth was facilitated by 

advances of many aspects, of which the major ones are numerical algorithms, grid generation 

and adaptation, turbulence modeling, flow visualization, as well as the dramatic increase in 

computer CPU and network speed.  Still, reveal of the full potential for CFD to solve 3D 

real-world problems largely depends on progress in these areas.  Numerical algorithm is 

served as a role of hardcore in CFD.  There was a complete link between the development of 

numerical methods for PDEs and CFD simulations, which makes CFD methods attractive 

beyond fluid dynamics as well, for example, in computational electromagnetics.  The 

unstructured-grids based high-order methodology is the focus of this dissertation. 

1.1 Background 

Numerical methods with better accuracy have been extensively explored as a central 

task since the birth of CFD, particularly for the past three decades.  The error order of a 

numerical method is measured by local truncation errors when the solution is smooth.  The 

spatial error norm � for a method of �� � 1 
 order decreases with mesh size 
 according to 

 � � 
���. (1.1) 

In this thesis we refer to high-order methods by those with an order of accuracy of at least 

three �� � 2
.  Without considering computer cost, even a second-order or a first-order 

method could produce highly accurate results if very fine mesh is used.  However, the 
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advantage of a high-order method is that it can achieve the same high accuracy more 

efficiently, as shown by Wang [127].  A similar analysis as to [127] yet with subtle 

difference in (1.3) is given as follows.  Mesh size 
 can be estimated from the total number 

of solution unknowns or degree of freedoms �� !"#
 in domain of interest, 

 
 � $ %� !"#&�/( . (1.2) 

Here % � 1 for FD method or FV method with one DOF for each grid point or cell; % �
∏ ���*
+,-.(!  for those methods with multiple DOFs in each cell depending on polynomial degree 

� or accuracy order � � 1,  for example, Discontinuous Galerkin method (DG) or Spectral 

Volume (SV) method or Spectral Difference (SD) method.  0 is the physical dimension 

number �0 � 1, 2, 3
.  Therefore by combining (1.1) and (1.2) the error can be expressed as 

 � � $ %� !"#&����
/( . (1.3) 

Notice that 1 1 % 2 � !"#.  Assuming that computer cost is roughly proportional to 

� !"#, higher order method gives better accuracy than lower order method with the same 

� !"# or computer cost. 

Choosing low-order or high-order method depends on the balance among 

computational speed, simplicity of coding, and resolution required.  Adequate second-order 

numerical methods are often good choices for many engineering application problems, of 

which the solutions are piecewise simple (almost linear) with several isolated discontinuities 

in between, for example, the solution of most Riemann problems.  That explains why most 

flow solvers in commercial CFD software packages are based on second-order numerical 

methods, either Finite Volume, Finite Difference, or Finite Element method.  But high order 

methods are necessary for those complex problems that require high resolution for both 
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discontinuities and rich small structures (mainly featured with unsteady vortex motion), for 

example, the Rayleigh-Taylor instability simulation [145,146], shock interaction with 

vortices [143,144], direct simulation of turbulence [79,115].  Computational aeroacoustics 

(CAA) is another example area where low-order methods are too dissipative, thus high-order 

methods are indispensable. 

1.2 Current state-of-the-art 

In terms of spatial discretization, the major CFD frameworks were historically 

cataloged as Finite Difference Method (FD), Finite Volume Method (FV), Finite Element 

Method (FE), and Spectral Methods, but recently there has been hybrid trend to build new 

algorithms by combining features from different methods.  In order to make CFD a useful 

tool for the real-world problems, the criteria for a high-order algorithm to meet should 

include 1) accurate; 2) conservative; 3) geometrically flexible; 4) computationally efficient; 

5) easy to implement.  Among these criteria preservation of accuracy and local conservation 

are essential requirements.  Obviously unstructured grids provide the best geometrical 

flexibility compare to structured grids.  Regarding computational efficiency and 

implementation, it is preferred that a method is naturally parallelizable with the property of 

intrinsically high compactness, which means that data exchange is only needed between 

immediate neighboring cells.  Also related to efficiency, a good scheme is expected to have 

good flexibility with unstructured mesh so as to allow easy hp-adaptation.  Abundance of 

CFD methods have been generated towards the above goals during the short history of CFD, 

but here only several mainstream methods are to be discussed to illustrate the current state-

of-the-art research on unstructured-grids based high-order CFD methods.  A good review on 
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this research area is given by Wang [127].  While the spatial discretization is the focus of this 

section, we briefly introduce the temporal discretization problem caused by high-order spatial 

operator in Section 1.3.2, and more details about temporal dsicretization will be given in 

Chapter 4. 

Although FE method can achieve high-order accuracy for unstructured grids by using 

high-order solution and test function polynomial spaces, it is well known that the continuous 

Galerkin FE method gives rise to central-difference type approximation of the differential 

operator, so it is unstable for wave equation.  Therefore for convection-dominated problems 

in fluid dynamics, stabilizing technique is needed for the standard continuous Galerkin 

method, for example, adding artificial dissipation as in the Streamline Upwind Petrov-

Galerkin (SUPG) method.  On the other hand, FV methods adequately reflect the physics of 

wave propagation in convection by using Riemann solver, a critical part of Godunov-type 

scheme for compressible flows.  FV method preserves mean values, thus it is local 

conservative.  The second-order FV methods now widely used in CFD industry are suitable 

for unstructured grids.  Unfortunately, FV method loses its compactness in high-order case, 

because there is only one degree of freedom (DOF), which is the cell-averaged state value, 

on each cell; therefore multiple cells are needed to construct high-order flux at interface.  The 

k-exact FV method developed by Barth and Frederickson [6] was a significant contribution 

for high-order FV method, but it still requires extended stencil which involves more than 

immediate neighboring cells.  Large stencil destroys compactness and degrades efficiency of 

parallel computing. 

For the past several years the discontinuous Galerkin (DG) finite element method, 

which combines the favorable features of FE and FV methods, probably has the most impact 
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in high-order method community.  Just like FV method and continuous FE method, the DG 

method approximates the integral version of the conservation law.  First the PDE 

 343� � 5 · 7�4
 � 0 
(1.4) 

is multiplied by a test function, then it is integrated by parts over each cell.  This step is 

similar to common continuous FE method, but for a DG scheme, both the solution function 

�4
 and the test function are represented by a piecewise polynomial function of degree k, 

respectively; therefore they are discontinuous at the cell interfaces.  Next the idea of finite 

volume method is borrowed here to find monotone numerical fluxes at the interfaces by 

using Riemann solver to reflect the physics of wave propagation in convection, a critical part 

of Godunov-type scheme for compressible flows.  The DOFs in DG are the expansion 

coefficients of the solution polynomial.  The DG method is highly compact thus 

parallelizable because only data from neighboring cells is needed to update the DOFs in the 

current cell.  The DG method also has some other favorable properties, such as provable 89 

stability, flexible for hp-adaptation and hanging grids [24]. 

The DG method was first introduced in 1973 by Reed and Hill [94], in the framework 

of neutron transport, i.e. a time independent linear hyperbolic equation, and then it was used 

for unsteady advection laws by Van Leer [120] in 1978.  The pioneer development of the DG 

method for non-linear hyperbolic conservation laws was made by Cockburn, Shu and their 

collaborators in a series of papers on the Runge-Kutta DG (RKDG) method [27,30,28,26].  

Bassi and Rebay made the breakthrough of developing the DG method for the compressible 

Euler and Navier-Stokes equations [10,9,11].  Many approaches have been developed to deal 

with the diffusion term in N-S equations, including the local DG (LDG) approach by 

Cockburn and Shu [25], the compact approach (BR2) by Bassi et al. [13], the interior penalty 
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(IP) method by Douglas and Dupont [35], and recovery scheme by van Leer [123], etc.  To 

avoid solving Riemann problem for face flux there are active research on high-order central 

scheme and central DG methd [84,71] , which followed the fashion of the famous Lax-

Friedrich scheme, yet reduced dissipative errors to high-order accuracy for convection-

related problems.  A quadrature-free approach by using node-based shape functions to 

replace the quadratures for the volume and face integrals was proposed by Atkins and Shu 

[4] to improve efficiency of the traditional DG methods.  A comprehensive review on DG 

history and literature was given in [29].  Recently the differential version of the DG method 

was developed based on flux reconstruction for Cartesian mesh by Huynh [53,54], and this 

type of formulation for high-order scheme is capable of unifying the DG method with several 

other unstructured-grids based high-order methods such as staggered multi-domain method, 

spectral difference method, and spectral volume method.  The flux reconstruction idea was 

generalized to “Lifting Collocation Penalty” approach by Wang, et al. [130] to handle 

triangular, tetrahedral, and prismatic cells, or cells of mixing types.  The implementation for 

the differential version of the DG method is simpler than the original integral version. 

The Spectral Volume (SV) method and Spectral Difference (SD) are recently 

developed high-order methods for unstructured grids, and employ the same solution space as 

the DG method, i.e., cell-wise discontinuous polynomials.  They differ from DG on how the 

DOFs are defined and updated.  The SV method is similar to a FV method, while the SD 

method is close to a FD method.  Although the term “Spectral” is used here, the SV and SD 

methods use local continuous polynomials to do “finite” spectral reconstruction on multi-

domains, compared to the original spectral method [43,17] that uses “global continuous” and 

orthogonal polynomials for spectral reconstruction on single domain.  Just as the Spectral 
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method, when applicable, the SV and SD methods have demonstrated the property of so 

called "exponential convergence" being the fastest possible. 

In SV method, each cell (spectral volume) in the domain is partitioned into sub-cells 

(control volumes).  The solution averages within these control volumes are defined as DOFs 

and used to build a higher-order reconstruction within the spectral volume.  Next the solution 

average on each control volume evolves in the same way as FV method.  At the spectral 

volume level, only immediate neighboring cells are involved to find high-order flux 

reconstruction at interface, therefore SV method is compact for high-order implementation.  

The SV method was developed by Wang, Liu and their collaborators [75,128,129,132,136] 

for hyperbolic conservation laws.  The SV method has been successfully extended to Navier-

Stokes equations [110,45], and 3D Maxwell equations [75].  Chen [21,22] developed many 

high-order SV partitions for simplexes in 2D and 3D with relatively small Lebesgue 

constants.  Comparisons between the SV and DG methods were given in [106,142].  More 

recently a weak instability in several SV partitions has been identified from Fourier analysis 

by Van den Abeele et al [117,118], and new partitions were suggested thereafter.  The 

quadrature-free implementation for the SV method has been developed for 2D flows by 

Harris et al [46] and 3D flows by the present author, et al [138].  The quadrature-free version 

of SV method is much more efficient than the standard quadrature based SV method, 

especially in 3D.  Chapter 2 of this dissertation gives more details on Quadrature-Free SV 

(QFSV) method. 

In SD method, two sets of points, i.e., the solution points and flux points are defined 

in each cell.  The solution points are the locations where the nodal values of the state variable 

are specified.  Flux points are the locations where the nodal values of fluxes are computed. 
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The DOFs are the conservative variables at the solution points.  Actually the SD solution is 

independent from the locations of the solution points; only the distribution of flux points 

matters, as shown in [118].  Next the high-order flux reconstructions obtained from the 

solution points by “collocation method” are used to evolve the DOFs at the solution points.  

The SD method in 1D and for 2D quadrilateral mesh is similar to the staggered-grid multi-

domain spectral method by Kopriva et al [60,61].  But the difference is that the SD method 

has the capability to handle simplexes such as triangles or tetrahedra.  The SD method shares 

the same properties of both high compactness and high-order accuracy as the DG and SV 

method, but is easier to implement than DG and SV because it does not involve surface or 

volume integrals, especially for high-order curved boundaries.  In 1D the SD method is 

equivalent to the SV method [118].  The SD method was first developed by Liu et al [73,74], 

then was extended to the Euler and Navier-Stokes equations [133,135, 82,83,52].  Huynh 

[53] proposed a set of 1D SV and SD schemes based on Legendre-Gauss quadrature points, 

which are stable for arbitrary orders of accuracy.  The present author and Wang [137] 

developed a parameter-free high-order limiter which has been verified on the SD method to 

capture sharp discontinuity while preserving high-order accuracy in the smooth extrema 

region.  Chapter 3 of this dissertation gives more details on high-order limiter.  An efficient 

implicit line solver, which is presented in Chapter 4 of this dissertation, has been developed 

for the SD method by the present author. 

The Essentially Non-Oscillatory (ENO) method [49] and Weighted ENO (WENO) 

method [70, 58] are two important milestones in constructing non-oscillatory schemes, which 

is also of significance for high-order methods.  The basic idea of ENO/WENO schemes is to 

use “multiple moving” stencils to find a smooth solution reconstruction.  Then this 



www.manaraa.com

9 

 

reconstruction polynomial is used to compute the state variables at the Gauss quadrature 

points, which are used to compute the Riemann fluxes.  In ENO scheme, the “smoothest” 

reconstruction is selected from a set of candidate reconstructions built from several different 

local stencils according to certain smoothness criteria; while in WENO, the smooth high-

order reconstruction is obtained from weighted (non-linear) average of the local low-order 

polynomials.  The ENO/WENO schemes were originally developed for structured grids and 

now have been extended to unstructured grids [1,36,86,104,40,51]. 

The Residual Distribution (RD) methods have aroused significant interests in high-

order method community.  The basic idea of RD is to find the reconstruction or distribution 

of the residual on each node forming a cell from the cell residual, compared to other high-

order methods such as DG, SV, SD, and WENO where the basic reconstruction is to find flux 

polynomials.  Here the trick is how to build a conservative distribution function.  The sum of 

the contributions from all the neighboring cells sharing the node is the nodal residual, which 

should vanish in steady state case, for example.  Next an iterative procedure is used to find 

the nodal solution based on the nodal residual.  Obviously this kind of schemes is compact 

and can be high-order accurate.  The upwind RD methods were initiated by Roe [97] and 

then further developed in collaboration with Deconinck and collaborators [33,87,88,5,85].  

Some other significant contributions to RD have been made by many researchers 

[18,3,95,87].  A comprehensive review of the RD methods is given by Abgrall in [2]. 

1.3 Remaining challenges 

Although many progresses have been made for unstructured-grids based high-order 

methods, currently there still exist some critical issues for all the high-order methods.  The 
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common key component in the high-order methods (as discussed in Section 1.2) is cell-wise 

high-order polynomial reconstruction, or in general, high-order solution space on each cell, 

from which we obtain high order of spatial accuracy in smooth region.  However, the high-

order solution space is not like a free lunch; it causes the following problems wanting good 

answers. 

1.3.1 Solution Discontinuity 

How to sharply capture discontinuity while preserving high-order accuracy elsewhere 

in the solution field, particularly at smooth extrema?  This is an old and new problem, which 

becomes much more difficult in high-order case because spurious oscillations caused by the 

Gibbs phenomenon at discontinuity are much larger and more out of control when using 

higher-order interpolation.  The artificial viscosity methods suppress spurious oscillations but 

also degrade order of accuracy globally.  The approach more often used is applying a robust 

locally first–order methods of Godunov-type at discontinuity and high-order method 

elsewhere for smooth region.  However, currently the methods for discontinuity detection 

cannot guarantee that all the detected “discontinuities” are real ones; some could be smooth 

extrema.  Therefore the first-order scheme originally intended to apply only at 

“discontinuity” could be misused and pollute smooth solution field.  More background of this 

problem and research overview is given in Chapter 3 of this dissertation. 

1.3.2 Efficient temporal discretization for steady problems 

The high-order spatial operators are much stiffer than low-order ones.  Therefore it is 

much more difficult to make a high-order simulation converged to steady state.  The situation 

becomes even worse when this stiff spatial operator combines with the anisotropy induced 
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stiffness, which is usually caused by highly clustered grids in the boundary layer for high 

Reynolds number viscous flow problems.  In that case the explicit time integrator is too slow 

due to the CFL condition.  The implicit methods allow much larger stable CFL number.  

However, currently the basic ideas of the implicit methods or multi-grids methods were 

extended from the low-order ones; none of them are specifically designed for high-order 

methods.  Now that there are multiple DOFs in one high-order cell, the computer core 

memory occupied by the cell Jacobian matrices is much larger than that in low-order case.  

For example, the memory requirement for polynomial construction of degree higher than 

three might be prohibitive for a 3D engineering problem.  Therefore the main challenge will 

be to develop effective and low storage implicit methods for high-order operators.  More 

background of this problem and research overview is given in Chapter 4 of this dissertation. 

1.3.3 High-order mesh generation 

The curved boundaries should be accordingly represented by high-order boundary 

mesh in high-order method; the error generated from the linear element representation for 

curved boundary must eventually affect not only the boundary region, but also transport 

elsewhere in the flow field.  One can always use very fine linear cells on curved boundary to 

reduce this error, but cannot eliminate it.  Moreover, coarser mesh is actually expected in 

high-order method; otherwise it loses its advantage compared with low-order method.  

Another problem with linear cell using straight gridline is that the curved boundary gridlines 

intersect with interior gridlines if highly clustered grids are used near a curved boundary (for 

example, wall) in high-Reynolds boundary layer number flows.  The self-intersected mesh is 

not allowed.  Therefore high-order mesh generation is necessary for high-order methods.  
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Currently the ability to generate suitable high-order meshes (at least quadratic for curved 

boundary) for 3D complex geometries is a significant limiting factor for applying high-order 

methods in industry, because almost all the available grid generation packages can only 

generate linear cells.  More background of this problem and research overview is given in 

Chapter 5 of this dissertation. 

The high-order methods can only be used in CFD industry as widely as low-order 

methods when the above issues are solved adequately. 

1.4 Objectives and accomplishments 

Motivated by solving the issues as discussed in Section 1.3 and building efficient 

high-order CFD methods for 3D real-world applications, the objectives sought by the present 

author are as follows: 

1)  High-order limiting technique for discontinuity; 

2) Low-storage efficient solver for high Reynolds number flows; 

3) Efficient quadrature-free SV methods for 3D applications. 

4) High-order mesh generation for 3D hexahedral mesh;  

The accomplishments of the present dissertation include the following diversified 

aspects: 

1) Parameter-free high-order generalized moment limiter for arbitrary mesh.  Firstly 

the discontinuity marker created in this method does not need any user-specified 

free parameter to detect the discontinuities and exclude the smooth extrema.  

Secondly the limiter has been designed to be naturally compact and efficient.  
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Finally it is generic, which can be applied to arbitrary mesh and all the high-order 

methods.  The publication for this work is [137,138]. 

2) Efficient line implicit solver with several new features including i) a scheme of a 

line BLU-SGS solver for the lined-up cells within the anisotropic thin boundary 

layer coupled with a cell BLU-SGS solver for other regions of less anisotropy 

stiffness, which significantly improves both robustness and convergence rate for 

highly stretched wall grids.  Up to 3 times of saving on CPU time has been 

demonstrated compared with the cell BLU-SGS solver; ii) low memory storage 

requirement due to the partial line solver/partial cell solver scheme and an 

efficient low-storage strategy for LU decomposition of the cell Jacobians; iii) 

robust and accurate viscous fluxes for anisotropic grids based on the second 

approach of Bassi and Rebay (BR2); iv) generic and compact formulation and 

coding as a black box so as to be easily applied in general high-order methods.  

3)  Efficient quadrature-free SV methods for 3D application.  This approach has 

improved the original SV method by replacing the large number of quadrature for 

face integrals in 3D case with many less nodal operations based on analytical 

shape functions.  The analytical shape functions on the nodal points, which are to 

be used for flux reconstruction in the flow solver, have been pre-computed by 

using symbolic software such as Mathematica.  The major contributions from the 

present author focus on the core parts of the 3D quadrature-free SV method, 

which include 1) found the complicated connectivity in 3D partition (linear, 

quadratic, and cubic) of a SV cell, which includes sub-faces, nodes, sub-cells 

(CVs), flux directions, and orientations relative to the neighboring cells; 2) 
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successful computed those complicated shape functions for each node.  Also an 

efficient method [62] to deal with curved boundary has been coupled into this 

quadrature-free SV method.  The publication for this work is [139]. 

4) High-order mesh generation for 3D hexahedral mesh.  This novel fully automatic 

algorithm guarantee to resolve the self-intersection problem for high-order 

quadrilateral or hexahedral mesh with strong robustness.  The algorithm also 

offers the advantage of correcting grid self-intersection without changing the 

basic aspect ratio of the original grids or degrading the original grid quality. 

1.5 Outlines of dissertation 

The dissertation is organized as follows.  In Chapter 2 we present the efficient 

quadrature-free SV method in 3D.  This chapter also includes the formulations of the original 

SV method and 3D partitions of a spectral volume.  In Chapter 3 we focus on the parameter-

free high-order limiting technique including the parameter-free and accuracy-preserving 

marker and the high-order generalized moment limiter.  Also in this chapter a review is given 

to the SD method, which plays a role as a test carrier of the limiter in this chapter and the 

implicit line solver in next chapter.  After that, we present the efficient low-storage line 

solver for high Reynolds number flows in Chapter 4.  In Chapter 5 the new high-order mesh 

generation method for curved boundary and highly clustered boundary grids is given.  Finally 

we conclude this dissertation and discuss some possible future research work in Chapter 6. 
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CHAPTER 2 QUADRATURE-FREE SPECTRAL VOLUME METHOD 

In this chapter we discuss the high-order spectral volume (SV) methods.  Firstly we 

have extended 2D SV method to 3D SV with high-order sub-cell partitions.  Secondly an 

efficient quadrature-free approach to implement the SV methods has been developed to 

achieve high efficiency while maintaining accuracy.  Also an efficient method to deal with 

curved boundary has been coupled into this quadrature-free SV method. 

The focus of this chapter is the quadrature-free approach for the SV methods.  In the 

SV method, in order to perform a high-order polynomial reconstruction, each simplex cell – 

called a spectral volume (SV) – is partitioned into a “structured” set of sub-cells called 

control volumes (CVs) in a geometrically similar manner, thus a universal reconstruction 

formula can be obtained for all SVs from the cell-averaged solutions on the CVs.  The SV 

method avoids the volume integral required in the DG method, but it does introduce more 

cell faces where face integrals are needed.  Therefore in order to improve the efficiency of 

SV method, the quadrature-free approach was developed by replacing the large number of 

quadrature for face integrals (in 3D case) in the original SV methods with many less nodal 

operations based on pre-computed analytical shape functions. 

2.1 The general 3D spectral volume method 

         Consider the 3D conservation law in the following form, 

 3:3� � 5 · " � 0, (2.1) 

on domain Ω � <0, => and Ω ? RA with the initial conditions within Ω and appropriate 

boundary conditions on 3Ω.  The conservative solution variable : can be a scalar or a vector, 
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and the generalized flux F can be a scalar, vector, or even tensor.  Domain Ω is discretized 

into I nonoverlapping tetrahedral cells (or elements), which are called “spectral volumes 

(SVs)”.  The SV cells are further partitioned into CVs in a geometrically similar manner, as 

shown in Figure 2.1.  For a complete 3D polynomial basis, a reconstruction of degree of 

precision p requires at least N CVs, where 

 ���
 � �� � 1
�� � 2
�� � 3
/6. (2.2) 

From the point of view of best interpolation polynomial, the optimal partition should 

make the Lebesgue constant minimum [129].  Therefore we use the following partitions 

which have been optimized for a minimal Lebesque constant.  Figure 1 shows the linear, 

quadratic, and cubic partitions of a tetrahedral SV given by Chen [21,22], where each CV is 

enclosed by planar polygonal faces for ease of computation. The Lebesque constants are 5.08 

and 6.87 for quadratic and cubic partitions, respectively. 

Integrating (2.1) over each CV, we obtain 

 3:C*,D3� � 1E*,D F G " · HIJKL0MKL
N

OP� � 0, (2.3) 

where  Q*,D , R � 1, … , T; V � 1, … , ���
.  :C*,D is the cell-averaged solution on Q*,D; MO 

represents the faces (with normal HIJKL) that enclose Q*,D. 

A high-order polynomial is then reconstructed within each SV such that 

 1E*,D G W*X�Y, Z, [
0Y0Z0[\,,] � :C*,D, (2.4) 

where W*X is a polynomial (or vector polynomial) of degree p for the i-th SV. 
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                 (a) Linear partition                                          (b) Quadratic partition 

 
(c) Cubic partition: 10-sided sub-cells 

          
                 (e) Cubic partition: 6-sided sub-cells and 19-sided sub-cells                                                             

Figure 2.1  Partition of a tetrahedron 
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To actually solve the reconstruction problem, we introduce the complete polynomial 

basis, �^�Y, Z, [
 _  X, where  X � `��Ha�^�Y, Z, [
b^P�c�X

, and  X denote the space of degree 

p polynomials in three dimensions.  Therefore W*X can be expressed as 

 W*X � F �*̂�^
c�X

^P� , (2.5) 

or in the matrix form 

 W*X � ��, (2.6) 

where e is the basis function vector <��, … , �c> and a is the reconstruction coefficient vector 

<��, … , �c>d.  Substituting (2.5) into (2.4), we then obtain 

 1E*,D F �*̂
c�X

^P� G �^�Y, Z, [
0Y0Z0[\,,] � :C*,D, (2.7) 

Let :C denote the column vector e:*,�, … , :*,cf, Equation (2.7) can be rewritten in the 

matrix form 

 g� � :C, (2.8) 

where the reconstruction matrix 

 

g �
hii
iij

1E*,� G ���Y, Z, [
0E\,,.   …   1E*,� G �c�Y, Z, [
0E\,,.…                              …                             … .1E*,c G ���Y, Z, [
0E\,,k   …   1E*,c G �c�Y, Z, [
0E\,,k lmm
mmn. (2.9) 

The reconstruction coefficients � can be solved as 

 � � go�:C, (2.10) 

provided that the reconstruction matrix R is nonsingular. Substituting (2.10) into (2.5) or 

(2.6), W*X is then expressed in terms of cardinal basis functions or shape functions 8 �
<8�, … , 8c> , 
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 W*X � F 8D�Y, Z, [
:C*,D � 8:Cc
DP� . (2.11) 

Here L is defined as 

 8 p �go�, (2.12) 

which satisfies 

 1E*,D G 8^0E � qD^\,,] . (2.13) 

Equation (2.11) gives the functional representation of the state variable : within the 

SV.  Therefore the function value of : at a quadrature point or any point �YOr, ZOr , [Or
 

within the i-th SV is thus simply as follows, 

 W*XsYOr , ZOr , [Ort � F 8DsYOr , ZOr , [Ort:C*,D
c�X

DP� . (2.14) 

Note that once  the polynomial  basis functions �^ are  chosen, the  shape functions 8D 

are  solely determined by the partition of a SV cell.  The shape and the partition of a SV cell, 

in general, can be arbitrary as long as the reconstruction matrix R is nonsingular.  However, 

different shapes of SV cells can result in the same expression of the shape functions (in terms 

of a few geometric parameters) if a geometrically similar partition can be applied to them.  

Since the volume integral of polynomial basis in (2.9) can be carried out easily over a 

transformed standard tetrahedron, the shape functions L, which are universal for all SVs, can 

be calculated analytically and stored as a preprocessing step. 

The flux integration over a face is performed using the Gauss quadrature formula 

 G " · HIJKL0MKL � F uOr" $WsYOr , ZOr , [Ort& · HIJKL0MO
v

rP� � !�
X
, (2.15) 
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where w is the number of quadrature points on the r-th face, and uOr are the Gauss quadrature 

weights, and sYOr , ZOr , [Ort stands for the Gauss quadrature points. 

Since a discontinuous solution can exist between SVs, an approximate Riemann 

solver is used to find fluxes for faces on SV boundaries.  Both the explicit 3
rd

-order TVD 

Runge-Kutta scheme and the implicit LU-SGS have been developed for time integration. 

2.2 Idea and formulation of quadrature-free SV method 

2.2.1 Motivation 

In the above general SV method, the so called “residual” (spatial discretized part of 

Equation (2.3)) is the summation of all the CV face flux integrals for a SV cell and each face 

integral is given by (2.15), including SV-bounding CV faces and internal CV faces (both are 

referred as “sub-faces” of a SV cell).  Computing residual is the major part of computer cost 

for high-order methods.  In 3D high-order case, the partition of a SV cell (tetrahedron) can be 

complicated with large number of sub-faces, as shown in Figure 2.1. Therefore quite a 

number of Gauss quadrature points might be needed in one SV cell to compute the face 

integrals to the desired precision, making the 3D SV method expensive.  For example, there 

are about 130 sub-faces for a cubic partition, and about 1100 quadrature points are needed 

just for one cell. 

To handle the face integrals more efficiently, it is necessary to develop a quadrature-

free approach for 3D application.  Since volume integrals and face integrals are also involved 

in DG methods, a quadrature-free method was proposed by Atkins and Shu
 
[4] for DG 

methods, and was tested in 1D scalar advection and 2D scalar advection and linear Euler 
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equations.  Here we extend the basic idea from [4] yet for a quadrature-free 2D SV method 

[46] to 3D SV.  This approach replaces the large number of quadrature for face integrals (in 

3D case) with many less nodal operations based on analytical shape functions.  The 

analytical shape functions on the nodal points, which are later used for flux reconstruction in 

the flow solver, have been pre-computed from some symbolic software such as Mathematica.  

However, the implementation of the basic quadrature-free idea for 3D situation involves 

significant efforts including: 1) finding the complicated connectivity in 3D high-order 

partition of a SV cell, which includes sub-faces, nodes, sub-cells (CVs), flux directions, and 

orientations relative to the neighboring cells; 2) computing those complicated shape 

functions for each node in a SV.   

2.2.2 Formulation 

In the new approach, a near optimal nodal set is selected following Hesthaven and 

Teng [50].  Figure 2.2 shows the nodal sets used for linear, quadratic, and cubic partitions.  

This nodal set is then used to reconstruct a degree � � 1 polynomial approximation for the 

flux vector, and then the flux integrals are computed analytically, without the need for Gauss 

quadrature formulas.  The flux vector " is approximated in terms of the basis set ax^b 

(constructed from simple monomials), 

 " � F x^�^
y

^P� � !�
X
, (2.16) 

If "�:
 is linear, then � � ���
; however, when "�:
 is nonlinear, � must be at 

least ��� � 1
 to obtain the design accuracy of order � � 1. We prefer to use � � ��� � 1
 

for all the cases, thus �^�Y, Z, [
 _  X�� with  X�� � `��Ha�^�Y, Z, [
b^P�c�X��

.  The 
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reconstruction problem reads as follows: Given the nodal values "*,z on a set of nodes within 

the SV cell R, find  W*X�� _  X��  such that 

 W*X���Yz, Zz, [z
 � "*,z, (2.17) 

where 

 W*X���Y, Z, [
 � ∑ x^�^�Y, Z, [
ŷP� . (2.18) 

 
Therefore a Lagrange shape functions defined by the nodal set can be found from 

(2.17) and (2.18).  Substituting (2.17) into (2.18) yields 

 "*,z � F x^�^�Yz, Zz, [z
y
^P� , (2.19) 

with H � 1,2, … , �. 
Let "C denote the column vector e"*,�, … , "*,yfd

.  Equation (2.19) can be rewritten in the 

matrix form 

 
(a) Linear cell                                                (b) Quadratic cell 

 

 
(c) Cubic cell 

Figure 2.2  Node set for a tetrahedron 
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 `x � "C, (2.20) 

where the reconstruction matrix 

 ` � | ���Y�, Z�, [�
     �9�Y�, Z�, [�
   …   �y�Y�, Z�, [�
…                        …                    …                  …���Yy, Zy, [y
   �9�Yy, Zy, [y
   …   �y�Yy, Zy , [y
}. (2.21) 

The reconstruction coefficients x can be solved as 

 x � `o�"C, (2.22) 

provided that the reconstruction matrix S is nonsingular. Substituting (2.22) into (2.18), W*X��
 

is then expressed in terms of shape functions ~ � <~�, … , ~y>: 
 W*X�� � F ~z�Y, Z, [
"*,z � ~"Cy

zP� , (2.23) 

here ~ is defined as 

 ~ p �`o�, (2.24) 

which satisfies 

 ~z�Y�, Z�, [�
 � q�z, (2.25) 

Again, this reconstruction is universal for all SVs if a nodal set is distributed in a 

geometrically similar manner for all SVs.  The flux vector " can be computed at any point 

using 

 "*�Y, Z, [
 � F ~z�Y, Z, [
"*,z
y

zP� , (2.26) 

For the flux on each internal face, the flux integral can be computed as a weighted 

average of the flux evaluated at the nodal set, i.e., 

 � " · HIJKL0MKL � ∑ s"*,z · HIJKLt � ~z�Y, Z, [
0MKLyzP� � !  

                   � ∑ s"*,z · HIJKLtMO~�z,KLyzP� � !�
X
. 

(2.27) 
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where  "*,z is the flux vector evaluated at node H on the i-th SV cell;  ~�z,KL is the face-

averaged value of shape function for face MO, which is universal for all SVs if a nodal set is 

distributed in a geometrically similar manner, and thus can be computed during 

preprocessing for a standard element and then the physical face area MO is multiplied. 

Based on the fact that � is much less than w for 3D high-order partition, it is much 

more efficient to evaluate flux integration from (2.27) than (2.15).  For a cubic partition 

example �� � 3
, only � � 35 nodal points are needed in quadrature-free approach (2.27), 

compared with the traditional SV method (2.15), where there are about 130 sub-faces and 

about 1100 quadrature points.  

For the SV-bounding faces with normal HIJ, the Riemann flux integral can also be 

computed without the use of a Gauss quadrature.  For example, Rusanov flux gives 

 "� · HIJ � �9 <"� · HIJ � "� · HIJ � ��:� � :�
>, (2.28) 

where � is the local maximum eigenvalue based the right and left cells.  Integrating (2.28) on 

face MO yields 

 � "� · HIJ0MKL � �9 �� "� · HIJ0MKL � � "� · HIJ0MKL � � ��:� � :�
0MKL �. (2.29) 

The fact that �~!�1
 and �:� � :�
~!�
X��
 tells us ��:� � :�
~!�
X��
, 

which is actually a high-order small term comparing with "�~W�X�� � !�
X��
 and 

"�~W�X�� � !�
X��
.  Therefore without loss of accuracy we can use a face-centered value 

based on an average state,  ��,KL ,  to replace the local � in (2.29).  Then (2.29) becomes 

 � "� · HIJ0MKL � KL9 e"C� � "C� � ��,KL�:C� � :C�
f, (2.30) 

where 

 "C� � �KL � "� · HIJ0MKL ,    "C� � �KL � "� · HIJ0MKL , (2.31) 
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:C� � �KL � :�0MKL ,    :C� � �KL � :�0MKL . 

Our numerical tests in the next section have verified the above accuracy analysis, and 

have shown that this quadrature-free approach preserves the accuracy of the SV method. 

2.3 Local and Global time stepping 

For local time stepping, the time step Δ� is determined from the stability limit (CFL 

number) specifically for each control volume or spectral volume (cell).  For control volume V 

on cell R, 
 Δ�*,D � Q"8 · E*,D∑ �|4z| � 	
 ·O MO , (2.32) 

where the control volume V is enclosed by faces MO, and 4z is the normal velocity on the 

face, and 	 is the speed of sound on the face.  Similarly local time step can be found on a SV 

cell as Δ�*.  Local time stepping is usually used for steady flow to speed up convergence 

regardless to time accuracy. 

For global time stepping, the time step Δ� is a global constant, which is the same for 

all the cells in the domain.  Global time stepping is needed for unsteady computations where 

time accuracy matters.  Considering stability limit, the global time step Δ� is set to be the 

minimum value of all the local time step sizes Δ�*,D, 

 Δ� � min*,D Δ�*,D. (2.33) 

2.4 Simplified curved boundary treatment 

High-order boundary cells are needed for high-order method to solve curved 

boundary problems, because low-order linear boundary cells with boundary line segments in 

2D or planar facets in 3D induce geometry error which will eventually pollute the solution 
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field and destroy solution accuracy, particularly for Euler equation applied on slip curved 

wall.  In practice even second-order accuracy is not obtained and computations often diverge 

without any special treatment for curved boundary.  One approach is to use isoparametric 

cells [131], which are commonly used in finite element community, to represent the curved 

boundary cells in consistent accuracy with solution.  However, the drawback of such 

isoparametric cell treatment is that it necessitates separate computation and storage of 

reconstruction for each curved boundary cell, which brings complication of implementation 

and extra computer costs. 

Some other treatments [62,77] choose to still use straight faces for boundary cells so 

that those cells on curved boundaries have the same cell reconstruction with internal cells, 

but the treatments manage to preserve conservation when computing the inviscid flux 

through curved boundary.  Among them a simple and favorable approach proposed by 

Krivodonova and Berger [62] has been implemented here in coupled with the present 

quadrature-free method.  This approach does not ensure the formal order of accuracy at 

boundary, but it does capture the major physical characteristics on slip wall boundary, that is, 

zero-flow in the normal direction of curved wall.  The basic idea of this approach is to use 

“true” face normal vectors to enforce slip-wall boundary condition with respect to the 

physical curved boundary, as shown in Figure 2.3.  A true normal might not be perpendicular 

to the straight mesh face on boundary.  
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Figure 2.3  “True” face normal for curved boundary 

It is not practical to find true face normal vectors in real-world applications.  So in 

Figure 2.3 a set of concentric spheres that intersect on the straight cell boundary face are 

applied to find the normal of the circle for a specific point on the straight mesh face to use.  

For example, between Point#2 and #4 the flow field is generated by the curved circular wall 

as if the flow goes out the straight boundary from Point#2 and goes into it through Point#4, 

thus maintains zero-flow conservation on the straight mesh boundary.  Once the “true” 

normal is found, the remained procedures of the solver almost keep unchanged, without extra 

complication or memory storage for curved boundary implementation.  

2.5 Numerical tests 

The 3D linear advection equation was used to analyze the accuracy of the present 

method by comparing with the exact solution.  The test results for 2D Euler equations with a 

circle and NACA0012 airfoil were also presented here.  The tests for 3D Euler equations can 

be found in [139].  For all cases the Rusanov numerical flux is applied. Both the explicit 3
rd

-

order TVD Runge-Kutta scheme and implicit LU-SGS scheme are used for time integration 

in all cases, and the time step ∆� used is small enough so that the numerical errors are 
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dominated by the spatial discretization, independent of the time step.  Given the initial values 

at the nodal set, the CV-averaged solution values were initialized by using the CV-averaged 

node-based shape functions, without the need of Gauss quadrature for preparing the CV-

averaged initial conditions.  The partition of the SV cells has been taken from [75,21]. 

2.5.1 Accuracy Study with 3D Steady Linear Advection 

The governing equation for this problem is 

 343Y � 343Z � 343[ � 0, (2.34) 

with the boundary conditions as 4 � sin <��2Y � Z � [
> for inflow; extrapolation of 4 for 

outflow.  The above equations describe a steady sinusoidal wave with unit wave speed in all 

three Cartesian directions. It is obvious that the exact solution for this problem is 

 4 � sin<��2Y � Z � [
>. (2.35) 

We solved (2.34) numerically by using pseudo-time integration as follows to find its steady-

state solution, 

 343� � 343Y � 343Z � 343[ � 0. (2.36) 

We generated a sequence of regular unstructured grids (Figure 2.4) in a cubic domain.  

The domain size used here is <0,1> � <0,1> � <0,1>.  First the cubic domain is represented by 

� � � � � cubic cells, and then each cell is cut into 6 tetrahedra.  Taking � � 10,20,40, we 

obtained a sequence of unstructured grids for the accuracy analysis under grid refinement.  In 

the following figures, cell size T � � √6�
.  The solution is taken as converged when the 89 

norm of the residual is reduced to machine zero. 
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Figure 2.5 shows the error norms (8� and 8�) of the present numerical solution 

comparing with the exact solution. The averaged slope is about 1.98 for the 2
nd

-order cases, 

and 2.73 for the 3
rd

-order cases.  The results show that the nearly optimum order of accuracy 

is attained for the 2
nd

-order and 3
rd

-order cases, respectively.  Based on that we are satisfied 

with our results of order of accuracy for the 2
nd

 –order and 3
rd

-order cases.  Figure 2.6(a) 

gives the contour of the solution on the fine mesh for the 3
rd

-order method, which shows the 

advection solution in a clear wave pattern. The number of DOFs used is 3.84 � 10�. 

2.5.2 2D flow around a circle 

The inviscid flow around a circle with ��	
 � 0.2 was computed to test the 

effectiveness of the curved boundary treatment in the present quadrature-free method for 

solving Euler equation.  A coarse mesh with 16 � 8 � 2 triangles and a fine mesh with 

32 � 16 � 2 triangles are used.  Here only the coarse grid is shown in Figure 2.8(a).  The 

implicit LU-SGS method is developed here for time integration.  Figure 2.9 compares the 

converged solutions for 2
nd

-order, 3
rd

-order, and 4
th

-order cases on the coarse mesh and the 

2
nd

-order on the fine mesh.  It is shown that the higher-order method indeed gives better 

results as expected, in terms of smoother contour lines and more symmetric flow field.  The 

simplified curved boundary treatment works compatibly with the present high-order method 

without loss of accuracy from the curved boundary (at least visually).  Also the 4
th

-order 

scheme using the coarse mesh with less DOFs (10240 DOFs) shows better result than the 2
nd

-

order scheme (actually FV scheme) using the fine mesh with more DOFs (12288 DOFs).  

The benefit of high-order method is manifested clearly here. 
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2.5.3 2D flow around NACA0012 airfoil 

Since the curved boundary treatment we use here approximates the curved boundary 

segments with arc, it is not enough to test only the ideal cases, i.e., circles or spheres.  Here a 

2D NACA0012 airfoil is used to further test the present quadrature-free SV method with the 

    
           (a) ��  norm of error                                         (b) ��  norm of error 

Figure 2.5  Accuracy study for linear advection problem. 

        

  (a) Mesh ��� � �� � � ���� ¡�¢� 
            (b) Contours of converged solution 

Figure 2.4  3D linear advection problem. 
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simplified curved boundary treatment.  A coarse mesh with 1536 cells, as in Figure 2.8(b), 

was generated for subsonic flow with ��	
 � 0.4, � � 5° by using 2
nd

-order, 3
rd

-order, and 

4
th

-order schemes.  The implicit LU-SGS method is developed here for time integration.  

From the converged solution shown in Figure 2.10, we see that better solution resolution is 

obtained from higher order scheme.  Therefore the present quadrature-free SV method works 

effectively with the aforementioned simple curved boundary treatment preserving high-order 

accuracy on the general non-circular curved boundaries. 

 

 

      (a)  Coarse mesh for circle: 256 cells         (b) Mesh for NACA0012 airfoil: 1536 cells 

Figure 2.6  Mesh for 2D Euler equation. 

Coarse mesh 16x8
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Figure 2.7  Mach contours for 2D inviscid flow around a circle ���	
 � 0.2
. 

 

 

Coarse mesh 16x82nd-order 3rd-order Coarse mesh 16x8

4th-order Coarse mesh 16x8
DOF = 10240

2nd-order Fine mesh 32x16
DOF = 12288
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                       (a) 2
nd

-order                                                (b) 3
rd

-order 

                                                           (c) 4
th

-order 

Figure 2.8  Mach contours for inviscid flow around NACA0012 airfoil. 

                                                  (��	
 � 0.4, � � 5°) 
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2.6 Conclusions 

The quadrature-free spectral volume method has been extended to 3D conservation 

laws including linear scalar advection equation and nonlinear Euler equations.  From the 

nodal values on a selected set of optimized and geometrically similar nodes within each SV, 

we found a set of universal shape functions for face integrals, which avoids the use of 

quadrature formulas without losing the properties of compactness and robustness that are 

inherent to the SV method.  In high-order computations for 3D problems, it has been shown 

that this new approach greatly reduces the number of flux calculations per SV that required 

in the traditional SV method.  Several representative inviscid cases that have analytical exact 

solutions were used to test the new quadrature-free SV method.  It has been found that the 

near optimum order of accuracy can be obtained in both 8� and 8� norms for both 2nd and 

3rd-order simulations in 3D.  This shows that the new approach preserves the stability and 

accuracy.  In addition, the test case of inviscid flow over a circle, NACA0012 airfoil and a 

sphere demonstrates the ability of the new approach to effectively handle curved boundaries 

using a simple curved wall treatment. 
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CHAPTER 3 PARAMETER-FREE GENERALIZED MOMENT LIMITER 

In this chapter we present a parameter-free high-order generalized moment limiter for 

arbitrary mesh.  Firstly a parameter-free discontinuity marker, which is the key component of 

the limiter, is proposed with the advantage of detecting only the discontinuities and excluding 

the smooth extrema on arbitrary mesh without involving any user-specified free parameter.  

Secondly a generalized moment limiter is designed for arbitrary mesh and all kind of high-

order methods in general.  The present high-order limiter is naturally compact and efficient, 

suitable for massively parallel computing.  Since we use the Spectral Difference (SD) method 

to test the new limiter here and the new implicit line solver in Chapter 4, a brief review of SD 

is also included in this chapter.  A literature survey is given below for research background 

of this old and new problem. 

3.1 Background and motivation 

A nonlinear hyperbolic conservation law can generate discontinuities even if the 

initial solution is smooth.  A significant computational challenge with a nonlinear hyperbolic 

conservation law is the resolution of such discontinuities, which has been a very active area 

of research for over four decades.  However, any linear scheme higher than first order 

accuracy cannot generate monotonic solutions, according to the Godunov theorem [42].  That 

means linear schemes of 2
nd

-order and higher will produce spurious oscillations near 

discontinuities due to the so-called Gibbs phenomenon, which can result in numerical 

instability and non-physical data, such as negative pressure or density.  Early research work 

on shock-capturing relied on numerical diffusion to smear the discontinuities so that they can 
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be captured as part of the numerical solution [125,68,78,57].  Besides the existence of user-

defined parameters, the historical drawback of the artificial viscosity approach is that the 

added dissipation terms cannot guarantee only locally effective, and often they are too 

dissipative in other flow regions.  Later, another type of approach was developed based on 

flux limiting, which introduced numerical diffusion implicitly.  Flux-limiting adjusts the 

fluxes going in and out of a computational cell with the goal of reducing or removing 

spurious oscillations.  Pioneering work in flux limiting includes the FCT [16], the MUSCL 

and related methods [119,121,96,69,49], and TVD methods [48,140].  However, the flux-

limiting and TVD methods suffered from accuracy-degradation to first-order at local extrema 

in smooth regions. 

Now the problem is:  how to sharply capture discontinuity while preserving high-

order accuracy elsewhere in the solution field, particularly at smooth extrema, on arbitrary 

unstructured meshes? 

High-order (3
rd

-order and higher) shock-capturing algorithms have the potential to 

obtain sharp non-oscillatory shock transition and simultaneously preserve accuracy in smooth 

regions.  The challenge of producing oscillation-free numerical solutions is tougher for high-

order methods than for lower order ones because of much reduced numerical dissipation.  

The artificial viscosity method has been improved [114,31,39] to minimize undesirable 

dissipation by using a spectral vanishing viscosity approach based on high-order derivatives 

of the strain rate tensor, though there still exist user-defined parameters that can be mesh or 

problem dependent.  The ENO [49] and WENO methods [58] used the idea of adaptive 

stencils in the reconstruction procedure based on the smoothness of the local numerical 

solution.  However, due to a lack of compactness, the implementation of both ENO and 
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WENO methods is complicated on arbitrary unstructured meshes, especially for 3D 

problems.  The MP5 [113] scheme preserves monotonicity very well by using a fixed stencil 

of 5 cells and a relatively simple limiting procedure, but it is not easy to be extended to 2D or 

3D on arbitrary meshes. 

In order to be compatible with the modern compact unstructured-grids based high-

order methods such as DG, SV, and SD, it is necessary to require that the designed limiter for 

those methods be compact and suitable for arbitrary meshes.  There have been many notable 

developments in limiters for high-order methods in the last decade.  Many of the limiters 

employ the so-called “troubled cell” (TC) approach, in which “oscillatory” cells are marked 

first, and the solutions in these cells are re-generated to remove or reduce the oscillations 

satisfying certain criteria such as mean-preserving.  The idea is first developed in [27], and 

then further extended in [14].  In [27,29], a limiter developed for the finite volume method 

[7] was used.  The moment limiter developed in [14] can be viewed as the generalization of 

the minmod limiter [121] to higher order derivatives or moments.  The central DG scheme 

proposed in [72] is a further generalization of the MUSCL scheme and the moment limiter.  

Other more recent developments include the use of WENO [92] and Hermite WENO [91,77] 

schemes to generate the reconstruction in “troubled cells”.  High-order limiters based on 

artificial viscosity have also been investigated by various researchers [55,89].  In the present 

study, our focus is on the TC approach. 

There are two major components in the TC approach: the marking or detection of 

“troubled cells”, and the data limiting (or remapping) in these cells.  In developing the 

present moment-based limiter, we set to achieve several goals: 1. free of user adjustable 

parameters; 2. capable of preserving accuracy at smooth regions including smooth extrema; 
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3. compact and efficient for arbitrary unstructured meshes. The requirement of no-user 

adjustable parameters is very important for a general purpose production-type flow solver, 

which can be applied to a wide variety of problems.  If a limiter’s success hinges on a 

“suitable” parameter which depends on the solution, the mesh and the order of accuracy, the 

limiter will more likely fail than succeed in real world applications.  In the present study, we 

compare several markers investigated in [90], namely, the minmod TVB marker [27], the 

KXRCF marker developed by Krivodonova et al. in [64], and the Harten marker [47], with 

the present parameter-free accuracy-preserving TVD marker.  For the limiter step, we extend 

the approach in [63] and [72] to arbitrary unstructured meshes in an efficient manner.  There 

are important differences between the present moment limiter and those in [63] and [72].  

Numerical results show that the present limiter can preserve accuracy at smooth regions, 

while capturing discontinuities.  Now the present limiting technique has been extended to a 

�-adaptive DG method by Kuzmin [65]. 

3.2 Review of the spectral difference method 

Consider the following hyperbolic conservation law, 

 
3:3� � 5 · " � 0 (3.1)  

on domain Ω � <0, => and Ω ? RA with the initial conditions within Ω and appropriate 

boundary conditions on 3Ω.  The conservative solution variable : can be a scalar or a vector, 

and the generalized flux F can be a scalar, vector, or even tensor.  In the case of the Euler 

equations, : is the vector of conservative variables. Domain Ω is partitioned into non-

overlapping triangular or quadrilateral cells (or elements). In the SD method, two sets of 

points, i.e., the solution points and flux points are defined in each element.  The solution 
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points are the locations where the nodal values of the state variable : are specified.  Flux 

points are the locations where the nodal values of fluxes are computed.  The DOFs in the SD 

method are the conservative variables at the solution points.  Figure 3.1 displays the 

placement of solution and flux points for the third-order SD schemes on triangular and 

quadrilateral cells. 

 

Given the solution :D,* at the j-th solution point within cell i (denoted as ¤JD,*), an 

element-wise degree p polynomial can be constructed using Lagrange-type polynomial base, 

 W*X�¤J
 � F 8D,*�¤J
:D,*,�
DP�  (3.2)  

where 8D,*�¤J
 are the Lagrange shape functions.  With (3.2), the solutions at the flux points 

can be computed.  Since the solutions are discontinuous across element boundaries, the 

fluxes at the element interfaces are not uniquely defined.  Obviously, in order to ensure 

conservation, the normal component of the flux vector on each face should be identical for 

the two cells sharing the face.  A one dimensional approximate Riemann solver (for example, 

Roe flux in this paper) is then employed in the face normal direction to compute the common 

  
         (a) Triangular mesh                                    (b) Quadrilateral mesh 

Figure 3.1  Solution (red solid circles) and flux points (green/blue solid squares).   
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Figure 3.2.  Flux computation for triangular or tetrahedral mesh 

normal flux "��:o, :�, HIJ
.  Since the tangential component of the flux does not affect the 

conservation property, we have the complete freedom to choose it at the face flux points.  Let 

the unit vector in the tangential direction be ¥J as shown in Figure 3.2.   

Here we offer two possibilities.  One is to use a unique tangential component by averaging 

the two tangential components from both sides of the face, 

 "̂ � "̂ s:o, :�, ¥Jt � 12 ¦e"J�:o
 � "J�:�
f · ¥J§. (3.3)  

The other option is to use their own tangential components separately, allowing 

discontinuous tangential components on the element interfaces.  For cell i, the tangential 

component is "J�:o
 · ¥J, and for its neighbor, "J�:� 
 · ¥J.  For a corner flux point in cell i, two 

faces (viewed from cell i) share the corner point, as shown in Fig. 2.  The full flux vector at 

corner point can be uniquely determined from the two normal Riemann flux components 

"�� � "� · HIJ� and "�9 � "� · HIJ9.  In spite that the fluxes at a cell corner point do not have the 

same value for all the cells sharing the corner, local conservation is guaranteed because 
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neighboring cells do share a common normal flux at all flux points.  Once the fluxes at all 

flux points are re-computed, they are used to form a p+1 degree polynomial, 

 WIJ*X���¤J
 � F ~^,*�¤J
"Ĵ ,*,�¨©.
^P�  (3.4)  

where "Ĵ ,* � "J�¤Ĵ ,*
, and ~^,*�¤J
 are the set of Lagrange shape functions defined by ¤Ĵ ,*.  The 

divergence of the flux at the solution points can be easily computed as, 

 5 · WIJ*X���¤J
 � F 5~^,*�¤J
 · "Ĵ ,*
�¨©.

^P� , (3.5)  

Finally the semi-discrete scheme to update the solution unknowns can be written as, 

 
0:D,*0� � F 5~^,*s¤JD,*t · "Ĵ ,*

�¨©.
^P� � 0. (3.6)  

The SD method for quadrilateral or hexahedral grid is identical to the staggered grid 

multi-domain spectral method [60,61].  It is particularly attractive because all the spatial 

operators are one-dimensional in nature.  In the original staggered-grid method, the solution 

and flux points are the Chebyshev-Gauss and Chebyshev-Gauss-Lobatto points.  Recently, it 

was found [53,117] that these flux points results in a weak instability.  New stable fluxes 

points were suggested in [53,117].  In the present study, we employ the Legendre-Gauss 

points plus the two end points as the flux points, as suggested in [53].  In an actual 

implementation, each physical element (possibly curved) is first transformed into a standard 

element (square).  The governing equations are also transformed from the physical space to 

the computational space as follows, 
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3:ª3� � 3"ª3« � 3¬ª3­ � 0, (3.7)  

where 

®"¬ª̄° � |w| ®«±  «²­± ­² ° ®"±"²° , :ª � |w|: 

The Lagrange interpolation shape functions in one direction for the conservative 

solution variable Q and fluxes Lagrange can be written as follows, respectively, 


*�³
 � ´ µ ³ � ³¶³* � ³¶· ;  ¥*��/9�³
 � ´ ¸ ³ � ³¶��/9³*��/9 � ³¶��/9¹c
¶Pº,¶»*

c
¶P�,¶»*  (3.8)  

The reconstructed solution for the conservative variables in the standard element is just the 

tensor products of the three one-dimensional polynomials, 

:ª�«, ­
 � F F :ª*,D
*�«

D�­
c
*P�

c
DP� . (3.9)  

Similarly, the reconstructed flux polynomials take the following form: 

 "ª�«, ­
 � F F "ª*��/9,D¥*��/9�«

D�­
c
*Pº

c
DP� , (3.10)  

 ¬ª�«, ­
 � F F ¬*,D��/9
*�«
¥D��/9�­
c
*P�

c
DPº . (3.11)  

For the inviscid flux, a Riemann solver is employed to compute a common flux at the 

interfaces to ensure conservation and stability.  Time integration is done by using either 

explicit TVD or SSP Runge-Kutta scheme [101,102] or an implicit BLU-SGS scheme [109]. 



www.manaraa.com

43 

 

3.3 Evaluation of several existing troubled cells markers 

In this section, we review and evaluate several troubled-cell detecting methods found 

in the literature.  We present a parameter-free TVD marker in next section.  Qiu and Shu [90] 

investigated seven markers currently used in the CFD community, and found that the 

minomd TVB marker [27], the marker developed by Krivodonova et al. named KXRCF in 

[64], and the Harten [47] marker are the best three among the seven markers they studied 

based on the amount of spurious oscillations in the solution, and the total number of cells 

marked.  These three markers are chosen in the current study, and are evaluated next. 

Consider the following 1D scalar conservation law, 

 ¼4½ � 7�4
± � 0, Y _ Ω,4�Y, 0
 � 4º�Y
. ¾ (3.12)  

The computational domain Ω is partitioned into N cells with � � 1 solution points and � � 2 

flux points in each cell.  In the following description, 
*, 4C*, and 4D,* denote the mesh size of 

cell i, the average solution and the value of the reconstructed solution polynomial at the j-th 

flux point of the i-th cell, respectively. 

3.3.1 Minmod TVB Marker 

A user specified parameter M is chosen, which is of the order of the solution’s second 

derivative in a smooth region.  Then the differences between the solutions at the cell 

interfaces (from left and right side, respectively) and the cell-averaged solution are examined.  

Denote these differences ∆4*,� � 4C* � 4�,* and ∆4*,� � 4X�9,* � 4C*.  If the following 

inequalities are satisfied, 

 |∆4*.�| 1 �
*9 �H0 |∆4*.�| 1 �
*9 (3.13)  
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the solution in cell i is considered smooth, and thus the cell is NOT a troubled cell.  

Otherwise, compute the following quantities, 

 Δ4¿*,� � %RH%À0sΔ4*,� , 4* � 4*o�, 4*�� � 4*t, (3.14)  

 Δ4¿*,� � %RH%À0sΔ4*,� , 4* � 4*o�, 4*�� � 4*t, (3.15)  

where the %RH%À0 function is defined as 

 

%RH%À0���, �9, … , �z

� Á# · min�Â�Âz|��|  R7 #RÃH���
 � #RÃH��9
 � Ä � #RÃH��z
 � #

0                                                                                      À�
�¤uR#�. ¾ (3.16)  

If either Δ4*,� or Δ4*,� is modified in (3.14) or (3.15), i.e., Δ4¿*,� Å Δ4*,� or Δ4¿*,� Å Δ4*,�, the 

cell is marked as a troubled cell.   

Equations (3.14) and (3.15) are similar to the MUSCL scheme [121] in spirit, but less 

restrictive.  In order to explain this, assume the solution to be linear with a slope of Si in cell 

i.  Then we have 

 Δ4*,� � Δ4*,� � *̀
*/2. (3.17)  

Define two more slopes using 

 *̀��/9 � 4*�� � 4*Y*�� � Y* , *̀o�/9 � 4* � 4*o�Y* � Y*o� , (3.18)  

then the following equation is equivalent to (3.14) and (3.15), 

 Æ̀* � %RH%À0 ¸ *̀, *̀o�/9 �
*o� � 
*

* , *̀��/9 �
* � 
*��

* ¹ (3.19)  

where Æ̀* is the limited slope.  We have used Y*�� � Y* � �
* � 
*��
/2 and Y* � Y*o� �
�
*o� � 
*
/2  in (3.19). 

If the mesh is uniform, then the factors 
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*o� � 
*
*  � 
* � 
*��
* � 2; 
If the mesh is extremely non-uniform, the above factors can approach 1.   

In practice, we could use a factor Ç _ �1,2> to represent the above factors in case of 

general non-uniform mesh, and (3.19) can be expressed as, 

 Æ̀* � %RH%À0 ¸ *̀, Ç 4* � 4*o�Y* � Y*o� , Ç 4*�� � 4*Y*�� � Y* ¹ (3.20)  

A larger Ç gives rise to the fewer number of cells to be marked, yet with the price of 

possibly missing some troubled cells that need data limiting.  A good compromise is Ç �
1.5.  Obviously if the solution is locally linear on one cell, then the cell is not marked 

because *̀ � È,oÈ,É.±,o±,É. � È,©.oÈ,±,©.o±,.   
As pointed out in [90], ��Ê 0
 is a free parameter, which depends on the solution of 

the problem.  For scalar problems it is possible to estimate � if the solution is smooth [27] 

(� is proportional to the second derivative of the initial condition at smooth extrema).  

However it is more difficult to estimate � for the systems case, such as the Euler and N-S 

equations.  If � is chosen too small, more cells than necessary will be marked as troubled 

cells.  If � is chosen too large, spurious oscillations may appear. 

3.3.2 KXRCF Marker 

In [64] Krivodonova, Xin, Remacle, Chevaugeon, and Flaherty proposed a shock-

detection technique based on DG’s super-convergence property at the outflow boundaries of 

an element in smooth regions.  This method was termed as the KXRCF marker.  The 

boundary of a cell, 3T*, can be partitioned into two portions: the inflow boundary 3T*o where 
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flow goes into the cell, and the outflow boundary 3T*� where flow exits the cell.  In the 1D 

case, if the wave speed 7Ë�4
 is positive at the left interface, then the left face �Y*o�/9
 is an 

inflow boundary; otherwise, the left face is an outflow boundary.  The right face can be 

classified in exactly the opposite fashion.  In an actual implementation, we use the averaged 

wave speed from both sides of a face to determine if it is an inflow or outflow boundary.  The 

KXRCF marker checks the solution on the inflow boundary to determine troubled cells.  

Without loss of generality, let’s assume the inflow boundary is the left interface for cell i. 

Then compute the following quantity 8*, 
 8* � Ì4�,* � 4X�9,*o�Ì
*�X�9
/9|4*| . (3.21)  

If 8* Ê 1, then cell i is marked as a troubled cell.  Note that since DG’s super-

convergence property occurs only in a smooth region, it is possible that the KXRCF marker 

excessively mark some cells in continuous but not smooth regions. 

3.3.3 Harten/Modified Harten Marker 

The Harten marker was originally developed in [47] and further modified in [90].  

Here is the basic idea.  First extend the reconstructed solution polynomials from the 

neighboring cells 4*o��Y
 and 4*���Y
 into cell i.  Then compute the differences between the 

average extended polynomials and the average of cell i.  In 1D, a jump (discontinuity) within 

cell i can cause one extension above the current cell average and the other below the current 

cell average.  Therefore the Harten marker can be formulated as follows.  Compute 

 "*�Í
 � 1
* ÎG 4*o��Y
0YÍ
±,É./Ï � G 4*���Y
0Y±,©./Ï

Í Ð � 4* . (3.22)  
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If 

 "* µY*��9· · "* µY*o�9· 1 0, (3.23)  

then a discontinuity possibly exists within cell i.  To improve its performance at smooth 

extrema, the cell-averaged degree p derivatives between the neighboring cells and the current 

cell are also compared. Therefore the marker is expressed as, 

if 

 

"* µY*��9· · "* µY*o�9· 1 0, 
and 

Ñ4*�X
Ñ Ê Ò Ñ4*o��X
 Ñ  �H0 Ñ4*�X
Ñ Ê Ò Ñ4*���X
 Ñ  
(3.24)  

cell i is marked as a troubled cell. We take the same value for the constant Ò �� 1.5
 in the 

numerical tests as in [90].  

We can make the following observations regarding the Harten marker.  When the 

polynomial degree � is high, the extension of the reconstructed solution polynomials from 

the neighboring cells might be strange and unexpected near a discontinuity, and may fail to 

mark a shock, as shown in Fig. 7.  In this case, the extended polynomials from both sides 

have cell averaged solutions larger than the current cell.  Therefore this strategy may fail to 

mark a discontinuity in a high-order scheme.  The Harten marker is difficult to implement for 

unstructured grids in multiple dimensions. 

3.3.4 Drawbacks with the above markers 

To illustrate the performance of the above three markers, examples of both smooth 

and discontinuous solution profiles have been used: 
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1) A smooth sine function, 4 � sin�2�Y
 ,   0 1 Y 1 1; 

2) A combination of smooth and discontinuous profiles: a smooth Gaussian, a square pulse, a 

triangle, and half an ellipse [63], which is defined as, 

4º�Y
 � ¬�Y, Ç, [ � q
 � ¬�Y, Ç, [ � q
 � 4¬�Y, Ç, [
6 , R7 � 0.8 1 Y 1 �0.6; 
4º�Y
 � 1,                                                                                          R7 � 0.4 1 Y 1 �0.2; 
4º�Y
 � 1 � |10�Y � 0.1
|,                                                            R7      0. 1 Y 1 0.2; 
4º�Y
 � "�Y, �, � � q
 � "�Y, �, � � q
 � 4¬�Y, �, [
6 , R7    0.4 1 Y 1 0.6; 
4º�Y
 � 0,                                                                                           À�
�¤uR#�. 
Here ¬�Y, Ç, [
 � �oÓ�±oÍ
Ï

,  "�Y, �, �
 � Ômax�1 � �9�Y � �
9, 0
, 

         � � 0.5, [ � �0.7, q � 0.005, � � 10, Ç � ¥ÀÃ2/�36q9
. 

3) An oscillating shock profile obtained when solving nonlinear hyperbolic equations. 

The marked cells for the above profiles are plotted in the following figures, on which 

the solid black lines stand for the initial profile, and the elevated red squares represent the 

troubled cell.  The performances and drawbacks for the above three marker are evaluated 

based on those results. 

The Minmod TVB marker works well for the scalar cases, as shown in Figure 3.3(a) 

and 3.3(b), where no cell is marked as troubled cell for the smooth sine wave, and only the 

cells at the discontinuity region are marked as troubled cells.  Here we estimated � from [27] 

by computing the maximum absolute value of the second derivatives of the initial solution in 

smooth regions for each of the two cases.  However, for the complex oscillating shock profile 

case in Figure 3.4, it is difficult to give good estimation of � from the profile.  It appears that 
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� � 40 is good that only the two cells at the discontinuity are marked as troubled cells, but 

we got this � � 40 by ad hoc testing.  For the system cases such as Euler and Navier-Stokes 

equations, it is more difficult to estimate �. 

The KXRCF marker detects the discontinuities as shown in Figure 3.5(b) and Figure 

3.6.  It also works well for the smooth sine wave case in Figure 3.5(a) as well as the smooth 

Gaussian extremum in Figure 3.6(a) (see the close-up view in Figure 3.6(b)), where no 

troubled cell at the local smooth extrema is marked.  This is expected because the KXRCF 

marker is exactly based on the super-convergence property on the elements’ outflow 

boundaries in smooth regions.  However, in continuous but not smooth regions, such as the 

vicinity of Y � �0.8 in Figure 3.5(b) or Y � �0.16 in Figure 3.6(a), the KXRCF marker 

excessively marks the cells in those continuous regions as troubled cells. 

The Modified Harten marker gives good results in the smooth sine wave case, as 

shown in Figure 3.7.  The results for the discontinuous profile case are acceptable, but its 

performance is sensitive to the interpolation order of polynomial as shown in Figure 3.8, 

where some more cells are marked when � � 5 than the � � 2 case.  This sensitivity can 

cause a serious problem in the high-order cases as shown in Figure 3.9, where the necessary 

condition (3.23) of the Harten marker fails to mark the shock cell.  This is because that the 

extensions of the solution polynomials from the neighboring cells can become large in the 

current cell, and the integral values from the left and the right cells are both positive, i.e. 

"*�Y*o�/9
 � 1.886,   "*�Y*��/9
 � 7.22. 

That is why the Modified Harten marker fails in this typical case. 

The above testing results show some critical drawbacks for the three markers, as 

summarized below: 
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1) The free parameters in the Minmod TVB marker can have decisive effects on the 

     performance of the marker. 

2) The KXRCF marker can mark too many cells in continuous regions as troubled 

     cells. 

3) The Harten marker can fail to detect a shock at a high-order setting, due to the 

    unexpected polynomial extensions from the neighboring cells.  In addition, the 

    Harten marker is difficult to implement in 2D and 3D. 

 

 

 

 

 

       
                                    (a)                                                                           (b) 

Figure 3.3  Minmod TVB marker by using M from [5] (p = 2). 

(a) sine wave, 20 cells;  (b) discontinuous profile [18], p=2, 200 cells. 
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                          (a)                                                                   (b) 

Figure 3.5  KXRCF marker 

(a) sine wave, 20 cells, � � Ø;  (b) an oscillating shock profile (5 cells, � � �). 
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                          (a)                                                                   (b) 

Figure 3.4  Minmod TVB marker for the oscillating shock profile with different Ù. 
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                          (a)                                                                   (b) 

Figure 3.7  Modified Harten marker for a sine wave with 20 cells. 

(a) � � Ø;  (b) � � Ú. 
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                          (a)                                                                   (b) 

Figure 3.6  KXRCF marker for a discontinuous profile [18], 200 cells, � � Ø. 

(b) is the close-up view for the Gaussian peak (the first from left) in (a).  
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Figure 3.9  Harten condition (22) (5 cells, p=6) cells. Circle: 

solution points; Blue line: extension from right; Red line: 

extension from left. 

X
-0.32 -0.28 -0.24 -0.2 -0.16 -0.12

0

0.4

0.8

1.2

1.6

2

2.4

      
                          (a)                                                                   (b) 

Figure 3.8  Modified marker for the discontinuous profile with 200 cells. 

  (a) � � Ø;  (b) � � Ú. 
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3.4 Accuracy-Preserving TVD Marker 

The above analyses bring some hints for us to set up some criteria to design a marker 

and a limiter.  For production-level high order CFD codes, users-specified problem-

dependent parameters are not desired.  Although it is impossible to design a perfect marker, 

one design goal we hope to achieve is a marker free of user-specified parameters.  Another 

design criterion is a marker that performs consistently regardless of mesh size and accuracy 

order of the scheme.  The final criterion is a marker which is easy and efficient to implement, 

and can be applied to arbitrary unstructured grids. 

The present Accuracy-Preserving TVD (AP-TVD) marker satisfies the above three 

criteria. 

The key idea inside the new marker is based on the simple observation that if an 

extremum is smooth, then the first derivative of the solution should be locally monotonic.  In 

order to recover the smooth extrema that are wrongly marked as troubled cells, the minmod 

function with favorable TVD property is activated on the cell-averaged first-derivatives to 

check if they are locally monotonic.  In the minmod TVB marker, if parameter � is 0, it 

becomes a TVD marker.  A well known drawback of the TVD marker is that cells at smooth 

solution extrema are marked.  So the Minmod TVB marker needs a user-specified parameter 

� to “manually” unmark those extrema.  In the present marker, we don’t need any free-

parameter.  Instead, we utilize the minmod function again, yet on the cell-averaged first-

derivatives to unmark those extrema that wrongly marked as troubled cells by the minmod 

function acting on cell-averaged values. 

The present marker follows the procedures as, 
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1) Compute the cell averaged solutions at each cell. Then compute the min and max cell 

averages for cell i from a local stencil using, 

      4�Û±,* � max �4*o�, 4* , 4*��
  and   4�Û±,* � max �4*o�, 4* , 4*��
. (3.25)  

If 

      4D,* Ê 1.001 · 4�Û±,*   or   4D,* Ü 0.999 · 4�*z,*, �V � 1, � � 2
, (3.26)  

cell i is considered as a possible troubled cell, which is further examined in the next 

step.  The coefficients 1.001 and 0.999 in (3.26) are not problem-dependent free 

parameters. They are used to overcome machine error when comparing two real 

numbers so as to avoid the trivial case that the solution is constant in the 

neighborhood. 

2) This step is aimed to unmark those cells at local extrema that are excessively marked 

as troubled cells in the first step (3.26). If an extremum is smooth, the first derivative 

of the solution should be locally monotonic. Therefore, a minmod TVD marker is 

applied to see if the second derivative is bounded by the slopes computed with the 

cell-averaged first-derivatives. Compute 

 4¿*�9
 � %RH%À0�4*�9
, Ç 4*��
 � 4*o���
Y* � Y*o� , Ç 4*����
 � 4*��
Y*�� � Y* 
 (3.27)  

If 4¿*�9
 � 4*�9

, the cell is unmarked as a troubled cell. Otherwise, the cell is confirmed 

as a troubled cell.  Obviously, this marker works for  � Ê 1. 

In order to compare the performance of the present new marker, the AP-TVD marker, 

with the Minmod TVB marker, the KXRCF marker, and the Modified Harten marker, we use 

the same three testing cases as before. Figure 3.10 shows that the present AP-TVD marker 

performs consistently well at the local extrema regions for all the polynomial order � Ê 1.  
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No cell is marked as a troubled cell in this smooth case as expected.  Figure 3.11 shows that 

the present marker indeed detects the discontinuities without excessively marking other cells 

in smooth regions.  It also shows the consistently good performance of detecting 

discontinuity for all the polynomial order � Ê 1.  Figure 3.12 shows the present marker only 

marks the two cells at the discontinuity as expected, no elsewhere, in contrast to the other 

markers. 

Comparing with the three “preferred” markers from [89], the present p-exact TVD 

marker has shown the advantages that 1) it has no free-parameter thus is problem-

independent; 2) it is efficient in terms of the number of marked cells over the total number of 

cells and it performs well in marking the discontinuities; 3) it is compact and easy to 

implement for arbitrary unstructured meshes. 

 

 

Figure 3.10  AP-TVD marker for the sine wave, 20 cells. 
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Figure 3.12  AP-TVD marker for the oscillating shock profile. 

(5 cells, � � �). 
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Figure 3.11  AP-TVD marker for the discontinuous profile [18], 200 cells. 
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3.5 Formulation of the Generalized Moment Limiter 

Next we present a p-exact high-order accuracy-preserving limiter based on the 

moment limiter [14,72] and cell averages.  The present limiter uses a Taylor-series-like 

expansion for the reconstruction, which is similar to that in [72].  The difference is that the 

expansion is performed with respect to the cell-averaged derivatives, rather than the 

derivatives at a specific point such as the cell centroid.  Then these cell-averaged derivatives 

are limited in a hierarchical manner starting from the highest derivative.  Combined with the 

AP-TVD marker, this new limiting technique exhibits the following properties: 1) free of 

problem-dependent parameters; 2) unstructured-grid based, easy to implement for 3D 

arbitrary meshes, and compact for parallel computing; 3) capable of suppressing spurious 

oscillations near solution discontinuities without loss of accuracy at the local extrema in the 

smooth regions.  We will call this limiting technique “parameter-free generalized moment 

limiter” (or termed as “PFGM limiter”). 

In the SD method the solution points are used to construct a degree � polynomial that 

can recover the conservative variables at the flux points.  This reconstruction can produce 

spurious oscillations near a shock wave.  Therefore a new non-oscillatory reconstruction is 

needed in the troubled cells.  The following idea is followed.  First the original degree � 

solution polynomial within a “troubled cell” is replaced with an equivalent polynomial based 

on the cell-averaged derivatives up to degree �.  Then the high-order derivatives are 

hierarchically limited using the cell-averaged derivatives of one degree lower.  In case that 

the highest derivative is not altered, the original polynomial is preserved.  This procedure can 

be easily implemented for unstructured-grid based high-order methods. 
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Let’s consider the 1D case first.  Let the original solution polynomial before limiting 

be 4±�Y
, and the limited polynomial be Þ*�Y
 within cell i.  First we express 4*�Y
 in terms 

of the cell-averaged derivatives up to degree �, 

 

4*�Y
 � 4* � 4*��
�Y � Y*
 

                   � �9 4*�9
 ��Y � Y*
9 � ��9 
*9� 

                    � �� 4*�A
 ��Y � Y*
A � �ß 
*9�Y � Y*
� 
                    � �9ß 4*�ß
 ��Y � Y*
ß � �9 
*9�Y � Y*
9 � à9ßº 
*ß� 
                    � Ä 

(3.28)  

where Y* represents the cell centroid coordinate.   (3.28) is functionally equivalent to (3.2). 

Next the cell-averaged derivatives are limited in a hierarchical manner by using a 

minmod-type limiter.  Starting from the highest-order derivative, 4�X

 is limited from, 

Þ*�X
 � %RH%À0 á4*�X
, Ç 4*�Xo�
 � 4*o��Xo�
Y* � Y*o� , Ç 4*���Xo�
 � 4*�Xo�
Y*�� � Y* â (3.29)  

If Þ*�X
 � 4*�X

, then the highest derivative is not altered.  No further limiting is 

required, and solution remains the same.  Otherwise, the limiting process proceeds to the next 

lower derivative in a similar fashion, 

Þ*��
 � %RH%À0 á4*��
, Ç 4*��o�
 � 4*o���o�
Y* � Y*o� , Ç 4*����o�
 � 4*��o�
Y*�� � Y* â , � � � � 1. (3.30)  

If  Þ*�Xo�
 � 4*�Xo�

, none of the lower derivative are further limited, i.e., 

 Þ*��
 � 4*��
, �� � � � 2, … ,1
. (3.31)  
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Otherwise, the process continues in a similar fashion hierarchically until the first 

derivative is limited.  In order to preserve the mean, the zero-th derivative (the mean) is 

retained, i.e., Þ* � 4*.   
Finally the limited polynomial is written as, 

 

Þ*�Y
 � Þ* � Þ*��
�Y � Y*
 

                   � �9 Þ*�9
 ��Y � Y*
9 � ��9 
*9� 

                   � �� Þ*�A
 ��Y � Y*
A � �ß 
*9�Y � Y*
� 
                   � �9ß Þ*�ß
 ��Y � Y*
ß � �9 
*9�Y � Y*
9 � à9ßº 
*ß� 

                   � Ä 

(3.32)  

Note that this limiter is compact, only involving data from its immediate neighbors, and easy 

to implement. 

Next we present an efficient extension to multi-dimensional unstructured grids.  

Similar to the 1D case, we first express the solution polynomial with respect to the cell-

averaged derivatives, 

 

4*�Y, Z
 � 4* � 4±,*ΔY � 4²,*ΔZ 

                       � �9 4±±,*<ΔY9 � T±±> � �9 4²²,*eΔZ9 � T²²f 
                      � 4±²,*eΔYΔZ � T±²f, 

(3.33)  

where 

               ΔY � Y � Y* , ΔZ � Z � Z*, ΔY9 � �Y � Y*
9, ΔZ9 � �Z � Z*
9, 
               Y* p �ã, � Y0Eã, , Z* p �ã, � Z0Eã, , 
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  T±± p �ã, � ΔY90Eã, , T²² p �ã, � ΔZ90Eã, , T±² p �ã, � ΔYΔZ0Eã, . 

We proceed to limit the cell-averaged derivatives involved in (3.33) for the troubled cells.  In 

multiple dimensions, especially in 3D, the efficiency of the limiter is a very important 

criterion.  In order to achieve the highest efficiency, we decide to limit the derivatives of the 

same degree altogether with a scalar factor between 0 and 1, i.e., the limited polynomial can 

be written as 

Þ*�Y, Z
 � 4* � �*��
s4±,*ΔY � 4²,*ΔZt 

      ��*�9
 ä�9 4±±,*<ΔY9 � T±±> � �9 4²²,*eΔZ9 � T²²f � 4±²,*eΔYΔZ � T±²få, 

(3.34)  

where �*��
 and �*�9

 are the scalar limiters in [0, 1] for the first and second derivatives on cell 

i.  The essential 1D idea is then generalized into 2D and 3D.  The limiter is conducted in the 

following steps assuming � � 2: 

 

 

 

 

 

 

 

 

Figure 3.13  Sketch of multi-dimensional limiting 
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1. Compute the cell-averaged 2
nd

 order derivatives in the troubled cell, and the cell-

averaged 1
st
 order derivatives in the troubled cell and its immediate face neighbors, 

as shown in Figure 3.13. 

Note: here for the case � � 2, the 2
nd

 order derivatives are constants, and the 1
st
 order 

derivatives are linear, so the cell-averaged 1
st
 order derivatives are actually the first 

order derivatives at the cell centroids, that is, 

4±,* � 4±,*�Y*, Z*
,   4²,* � 4²,*�Y*, Z*
. 

Similarly for general high order case of � degree, the �-th order derivatives are 

constants and the (�-1)th order derivatives are linear, therefore 

4±,*�Xo�
 � 4±,*�Xo�
�Y*, Z*
,   4²,*�Xo�
 � 4²,*�Xo�
�Y*, Z*
. 

The equivalence between a cell-averaged derivative of order �-1 and the correspond- 

-ing centroid value provides us a tool to do limiting on the highest order derivatives 

as in Step 3. 

2. Assume one of the face neighbors is cell j.  Define the unit vector connecting the 

centroids of cell i and cell j as ¥J.  Compute the 2
nd

 order derivative in ¥J direction 

according to 

 4^^,* � 4±±,*¥±9 � 4²²,*¥²9 � 24±²,*¥±¥². (3.35)  

4^^,* is to be examined next to determine whether limiting is necessary. 

3. Compute the first derivative in ¥J direction for both cell i and j, 

4^,*�Y*, Z*
 � 4±,*¥± � 4²,*¥² , 4^,DsYD , ZDt � 4±,D¥± � 4²,D¥². (3.36)  

Now we can estimate a “non-oscillatory” 2
nd

-derivative using 
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 4¿^^,* p Èç,]s±],²]toÈç,,�±,,²,
ÌOJ]oOJ,Ì . (3.37)  

4. Finally the scalar limiter for this face is computed according to 

 �*D�9
 � %RH%À0�1, ÓÈèçç,,Èçç,, 
. (3.38)  

The steps are repeated for the other faces.  Finally, the scalar limiter for the cell i is 

the minimum of those computed for the faces, i.e. 

 �*�9
 � miné��*D�9

. (3.39)  

If �*�9
 � 1, the 2
nd

 order derivatives are not altered, and the solution polynomial remains the 

same.  Otherwise, continue to limit the 1
st
 order derivatives in a similar fashion by finding 

�*��

, i.e. 

 �*D��
 � %RH%À0�1, ÓÈèç,,Èç,, 
. (3.40)  

where 

 4¿^,* p 4D � 4*Ì¤JD � ¤J*Ì (3.41)  

Then 

 �*��
 � miné ��*D��

 (3.42)  

As can be seen, this generalized moment limiter keeps its compactness for arbitrary 

unstructured meshes because only cell-averaged values or derivatives on a local cell and its 

immediate neighboring cells are involved within the limiting process.  Also the present 

limiter preserves a locally degree � polynomial, therefore satisfying the �-exact property. 
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3.6 Numerical Tests 

In this section we provide extensive numerical experimental results to demonstrate 

the performance of the PFGM limiter described as above.  In the numerical tests, for 

unsteady problems, the three-stage explicit TVD Runge-Kutta scheme [76] was used for time 

integration; for the steady transonic flows the implicit BLU-SGS [23] method was used. 

3.6.1 Accuracy study for linear scalar wave equation 

Consider the 1D linear wave equation, 

 4½ � 4± � 0, (3.43)  

with initial condition 4�Y, 0
 � sin �2�Y
 and periodic boundary conditions.  The CFL 

number �CFL � 7Ë�4
Δ�/ΔY
 used for each case is as follows: 1) CFL � 0.01 for � � 1,2,3; 

2) CFL � 0.001 for � � 4,5.  These CFL numbers are small enough so that the error is 

dominated by the spatial discretization.  In this test, the AP-TVD marker is turned off and all 

the cells are marked so that the present generalized moment limiter is applied to every cell in 

order to test the accuracy of the present limiter alone on smooth solution field.  If the AP-

TVD marker is turned on, then none of the cells is marked for this smooth solution as 

expected and the results is the same as the original unlimited schemes.  The 8� and 8� error 

norms at � � 1 for various schemes with and without the limiter are shown in Table 3.1 with 

8� error norms plotted out in Figure 3.14.  We can see that the present limiter preserves the 

designed order of accuracy of the original SD method, although the magnitude of the error is 

larger than the unlimited schemes. 
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Figure 3.15  Accuracy study with non-linear Burgers equation (3.44) at �=0.1. 
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Figure 3.14  Accuracy study with linear advection equation (3.43) at �=1. 
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Table 3.1  1D linear scalar equation (3.43) at t=1 

    SD with the present limiter SD with no limiter 

  N L1 error order L∞ error order L1 error order L∞ error order 

  10 1.1576E-01   2.6194E-01   6.2796E-02   1.0096E-01   

 
20 4.4521E-02 1.38 1.0353E-01 1.34 1.6648E-02 1.92 2.6315E-02 1.94 

 p=1 40 1.2363E-02 1.85 4.3987E-02 1.23 4.2294E-03 1.98 6.6904E-03 1.98 

  80 3.0796E-03 2.01 1.6468E-02 1.42 1.0626E-03 1.99 1.6763E-03 2.00 

  160 7.5324E-04 2.03 6.0384E-03 1.45 2.6617E-04 2.00 4.1896E-04 2.00 

  10 7.8126E-03   1.9328E-02   1.0324E-03   2.5496E-03   

 
20 1.2731E-03 2.62 4.6999E-03 2.04 1.1699E-04 3.14 2.6973E-04 3.24 

 p=2 40 1.3321E-04 3.26 8.5111E-04 2.47 1.4260E-05 3.04 3.4615E-05 2.96 

  80 1.3979E-05 3.25 1.4978E-04 2.51 1.8119E-06 2.98 4.5531E-06 2.93 

  160 1.5226E-06 3.20 2.6891E-05 2.48 2.2916E-07 2.98 5.8315E-07 2.96 

  10 3.0792E-03   6.9129E-03   3.7241E-05   9.1629E-05   

 
20 1.8082E-04 4.09 7.4760E-04 3.21 2.3173E-06 4.01 5.7505E-06 3.99 

 p=3 40 1.0360E-05 4.13 7.6408E-05 3.29 1.4469E-07 4.00 3.6057E-07 4.00 

  80 5.8874E-07 4.14 7.6032E-06 3.33 9.0404E-09 4.00 2.2606E-08 4.00 

  160 3.2429E-08 4.18 7.4394E-07 3.35 5.6498E-10 4.00 1.4209E-09 3.99 

  10 1.5234E-04   4.1695E-04   1.1771E-06   3.0429E-06   

 
20 4.6880E-06 5.02 2.1391E-05 4.28 3.6393E-08 5.02 9.6516E-08 4.98 

 p=4 40 1.3730E-07 5.09 1.0898E-06 4.29 1.1283E-09 5.01 3.0140E-09 5.00 

  80 3.7880E-09 5.18 5.5677E-08 4.29 3.5235E-11 5.00 9.4237E-11 5.00 

  160 1.0190E-10 5.22 2.7379E-09 4.35 1.1011E-12 5.00 2.9455E-12 5.00 

  10 4.3204E-05   1.3471E-04   3.0958E-08   8.7921E-08   

 
20 7.0644E-07 5.93 3.7905E-06 5.15 4.7381E-10 6.03 1.3735E-09 6.00 

 p=5 40 1.0409E-08 6.08 1.0376E-07 5.19 7.3468E-12 6.01 2.2221E-11 5.95 

  80 1.4958E-10 6.12 2.7882E-09 5.22 1.2642E-13 5.86 4.5155E-13 5.62 

  160 2.1312E-12 6.13 7.3848E-11 5.24 1.7917E-15 6.14 5.0502E-15 6.48 

 

3.6.2 Accuracy study for non-linear Burgers equation 

The Burgers equation resembles the Euler or NS equation due to its nonlinear 

convection term.  Consider the 1D Burgers equation without diffusion term,   

 4½ � ¸492 ¹± � 0 (3.44)  

with initial condition 4�Y, 0
 � 1 � sin ��Y
, periodic boundary conditions.  The CFL 

number used for each case is as follows: 1) CFL � 0.01 for � � 1,2,3; 2) CFL �
0.001 for � � 4,5.  Again here the present limiter is applied to all the cells in order to test the 
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performance of the limiter alone on smooth solution field.  The 8� and 8� error norms at 

� � 0.1 (when the solution is still smooth) for various schemes with and without the limiter 

are given in Table 3.2 with 8� error norms plotted out in Figure 3.15.  The results show that 

the present limiter preserves the designed order of accuracy of the original SD method.  The 

results are quite similar to the linear scalar wave case. 

Table 3.2  1D Burgers equation (3.44) at t=0.1 

    SD with the present limiter SD with no limiter 

  N L1 error order L∞ error order L1 error order L∞ error order 

  20 7.0163E-03   3.2793E-02   3.4361E-03   1.1337E-02   

 
40 1.7393E-03 2.01 1.5394E-02 1.09 9.8232E-04 1.81 3.1532E-03 1.85 

 p=1 80 4.3983E-04 1.98 4.9412E-03 1.64 2.6785E-04 1.87 8.3466E-04 1.92 

  160 1.0758E-04 2.03 1.6378E-03 1.59 7.0983E-05 1.92 2.1344E-04 1.97 

  320 2.6454E-05 2.02 7.1175E-04 1.20 1.8452E-05 1.94 5.3898E-05 1.99 

  20 3.3415E-04   3.3977E-03   1.5235E-04   8.6051E-04   

 
40 3.4772E-05 3.26 5.4903E-04 2.63 1.9766E-05 2.95 1.3631E-04 2.66 

 p=2 80 3.7991E-06 3.19 9.0709E-05 2.60 2.5154E-06 2.97 1.9223E-05 2.83 

  160 4.7668E-07 2.99 1.5226E-05 2.57 3.2030E-07 2.97 2.5484E-06 2.92 

  320 6.0395E-08 2.98 2.7296E-06 2.48 4.1043E-08 2.96 3.2824E-07 2.96 

  20 3.5171E-05   3.8092E-04   5.5214E-06   4.2708E-05   

 
40 1.5999E-06 4.46 2.8953E-05 3.72 3.8188E-07 3.85 3.1396E-06 3.77 

 p=3 80 7.5129E-08 4.41 1.9343E-06 3.90 2.5783E-08 3.89 2.1012E-07 3.90 

  160 3.7027E-09 4.34 1.2389E-07 3.96 1.6896E-09 3.93 1.3534E-08 3.96 

  320 2.0730E-10 4.16 7.8455E-09 3.98 1.0801E-10 3.97 8.6140E-10 3.97 

  20 1.1463E-05   1.7368E-04   2.8332E-07   2.8161E-06   

 
40 1.0677E-07 6.75 2.6742E-06 6.02 9.8744E-09 4.84 1.2271E-07 4.52 

 p=4 80 2.7858E-09 5.26 1.2660E-07 4.40 3.3521E-10 4.88 4.4423E-09 4.79 

  160 8.5677E-11 5.02 6.0825E-09 4.38 1.1054E-11 4.92 1.4857E-10 4.90 

  320 2.2690E-12 5.24 3.0752E-10 4.31 3.5661E-13 4.95 4.7974E-12 4.95 

  20 7.1775E-06   6.9139E-05   1.7147E-08   1.4552E-07   

 
40 2.0250E-08 8.47 3.1842E-07 7.76 2.9003E-10 5.89 3.6121E-09 5.33 

 p=5 80 2.8244E-10 6.16 6.9941E-09 5.51 4.8737E-12 5.90 6.1939E-11 5.87 

  160 2.9685E-12 6.57 1.5381E-10 5.51 8.5272E-14 5.84 1.0062E-12 5.94 

  320 3.3919E-14 6.45 2.9638E-12 5.70 3.0339E-15 4.81 2.9418E-14 5.10 

 

3.6.3 Combined smooth and discontinuous waves 

For all the rest tests, the present Parameter-Free AP-TVD Marker and the present 

Generalized Moment Limiter (so called “PFGM Limiter”) will work together to capture 
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discontinuities.  Here we first solve the 1D wave equation (3.43) at � � 8 with the initial 

condition [63] set up to be the exact solution as plotted in Figure 3.16.  Periodic boundary 

conditions were used.  A uniform mesh is used with total of 200 cells.  The CFL number used 

for each case is as follows: 1) CFL � 0.01 for � � 1,2,3; 2) CFL � 0.001 for � � 4,5.  The 

long time evolution (� � 8) was considered in order to demonstrate high-order accuracy and 

low dissipation of the present schemes.  The numerical solution is plotted at each solution 

point (red square).  As seen that the present PFGM limiter yields good results at both the 

smooth region (as for the local extrema of the first jump) and discontinuities. 

 

 

 
Figure 3.16  Solution of linear advection problem at �=8, N=200, �=1,2,3,4,5. 

Solid line: exact solution;  red square: solution points. 
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3.6.4 Burgers equation with shock 

In this example the Burgers equation (3.44) was solved with the same initial 

conditions and periodic boundary conditions as in 3.6.2, but until � � 0.8 when a shock 

appears.  The CFL number used for each case is as follows: 1) CFL � 0.01 for � � 1,2,3; 

2) CFL � 0.001 for � � 4,5.  A mesh with 100 uniform cells was used with the present 

PFGM limiter of various orders.  The shock was captured sharply without oscillations, as 

shown in Figure 3.17. 

 

 

 
Figure 3.17  Solution of Burgers equation (3.44) at t=0.8, N=100, p=1,2,3,4,5. 

Solid line: exact solution;  red square: solution points. 
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3.6.5 Sod shock-tube problem 

Sod shock-tube problem was solved to test the present PFGM limiter for the Euler 

equations, 

 4½ � 7�4
± � 0 (3.45)  

 

where 

4 � �ð, ðñ, ò
d , 7�4
 � sðñ, ðñ9 � �, ñ�ò � �
td , 
 ò � �ó � 1 � 12 ðñ9, ó � 1.4, 

and ð, ñ, ò, � are the density, velocity, total energy, and pressure, respectively.  The initial 

condition is 

�ð, �, ñ
 � ¼ �1,1,0
         7À¤ Y Ü 0,�0.125,0.1,0
               7À¤ Y � 0.¾ 
In Figure 3.18, the computed density at �=2 with the present PFGM limiter is 

compared with the exact solution for �=1,2,3,4.  The time step size used for each case is as 

follows: 1) 0� � 0.001 for � � 1,2; 2) 0� � 0.0005 for � � 3,4.  Note that the solutions 

appear oscillation-free, and both the shock and contact were well captured.  The higher-order 

scheme appears to yield better results. 
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3.6.6 Shock acoustic-wave interaction 

The problem of shock-acoustic wave interaction [58] was solved to show the 

advantage of the present high-order limiter for the problems with both shock waves and 

complex smooth features.  We solved the Euler equations (3.45) with a moving Mach=3 

shock interacting with a sine wave in density, i.e., initially, 

�ð, �, ñ
 � ¼ �3.857143, 10.333333, 2.629369
    7À¤ Y 1 �4,�1 � 0.2 sin�5Y
 , 1, 0
                                  7À¤ Y � �4.¾ (3.46)  

 

 
Figure 3.18 Sod problem, �=2, N=200 cells, �=1,2,3,4. 

Solid line: exact solution;  Red square: solution points. 
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For comparison, a converged solution using a second-order MUSCL scheme on a grid 

of 3,200 cells is used as the ‘‘exact’’ solution.  In Figure 3.19, the converged solution of 

density at �=1.8 is compared with the “exact” solution for �=1, 2, 3 with the present PFGM 

  

  

 
  

Figure 3.19  The shock-acoustic interaction problem, �=1.8, ô=400 cells, �=1,2,3. 

Solid line: exact solution;  red square: solution points.   

Right: close-up view for the complex smooth region in the left graphs. 
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limiter on a medium mesh with N=400 cells and time step size 0�=0.0005.  It shows that the 

smooth local extrema are better recovered if using the present limiter in higher-order form 

(�=2, 3).  A close-up view of the complex smooth region is also given aside for each case in 

Figure 3.19. 

3.6.7 Shock vortex interaction 

From now on we test the present limiter for 2D inviscid flow problems with 

discontinuities.  The conservative form of the 2D Euler equation can be written as 

 
3:3� � 3"3Y � 3¬3Z � 0, (3.47)  

where : is the conservative solution variables, ", ¬ are the inviscid flux given below, 

: � Á ðð4ðñò õ , " � ö ð4ð49 � � ð4ñ4�ò � �
÷ , ¬ � ö ðñð4ñðñ9 � �ñ�ò � �
÷. 
Here ð is the density, 4, ñ are the velocity components in Y and Z directions, � is the 

pressure, and ò is total energy.  The pressure is related to the total energy by 

ò � �ó � 1 � 12 ð�49 � ñ9
, 
with ratio of specific heat ó � 1.4.  

The shock vortex problem describes the interaction between a stationary shock wave 

and a vortex, and is a good test for the PFGM limiter in resolving both discontinuities and 

important smooth features.  The flow conditions are the same as in [58].  The computational 

domain is taken to be <0,2> � <0,1>.  A stationary shock with a pre-shock Mach number of 

�¶ � 1.1  is positioned at Y � 0.5 and normal to the Y-axis.  Its left state is �ð, 4, ñ, �
 �
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�1, √ó, 0,1
.  An isentropic vortex � Xøù � 	ÀH#�. 
 is superposed to the flow left to the shock 

and centers at �Y� , Z�
 � �0.25,0.5
.  Therefore the flow variables on the left side of the 

shock are as follows 

4 � �¶Ôó � ú��ûs�oüÏt#RHÒ, 
ñ � �ú��ûs�oüÏt	À#Ò, 

ð � ¸1 � �ó � 1
ú9�9ûs�oüÏt4�ó ¹ �ýo�, 
� � ¸1 � �ó � 1
ú9�9ûs�oüÏt4�ó ¹ ýýo�, 

where � � ¤/¤� and ¤ � Ô��Y � Y�
9 � �Z � Z�
9
.  Here ú denotes the strength of the 

vortex, � is the decay rate of the vortex; and ¤� is the critical radius for which the vortex has 

the maximum strength.  They are set to be ú � 0.3, � � 0.204, ¤� � 0.05. 

The 3
rd

 order SD method was employed as the base scheme in the simulation on a 

coarse mesh of 86 � 35 cells in order to have almost the same numbers of degree of freedom 

as in [58] (where the WENO method was used) for comparison purposes.  The time step size 

used is 0�=0.0005.  The grids are uniform in y-direction and clustered near the shock in x-

direction.  The boundary conditions for the top and bottom boundaries are set to symmetry, 

or slip wall.  The computed solution fields (pressure contours) for different time moments are 

given in Figure 3.21 through Figure 3.25 to compare the 3
rd

-order PFGM limiter and the 2
nd

-

order linear limiter (in which the solution at the troubled cells is assumed linear). 

The snapshots at �=0.05, �=0.20, and �=0.35 are shown in Figure 3.21, Figure 3.22, 

and Figure 3.23, respectively.  We can see that the 3
rd

-order PFGM limiter recovers the 
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smooth vortex (an extremum) much better than the linear limiter, and the shock discontinuity 

has been more sharply captured as well.  It appears the present simulation captures the shock 

waves with a higher resolution than [58, FIG.15].  This can be seen from a black/white graph 

as shown in Figure 20 (at �=0.2) to compare with that in [58, FIG.15] under the same 

conditions.  Not like [58, FIG.15], the present result of pressure contour at the shock 

interface does not extend to the top and bottom boundary.  This is actually expected, because 

pressure there is discontinuous, so there should be no contour.  Therefore the color plots are 

needed to clearly show the regions before and after the shock. 

Figure 24 and Figure 25 show snapshots for later moments, �=0.6 and �=0.8 using the 

3
rd

-order PFGM limiter and the linear limiter, respectively.  We can see here that the 

reflective boundary takes effects as time goes long enough when one of the shock 

bifurcations reaches the top boundary and reflects.  Figure 25(a) shows that the reflection is 

well captured and in the meanwhile the smooth vortex (an extremum) is preserved as well, 

which gives better resolution than the linear limiter as shown in Figure 25(b).  Again the 3
rd

-

order PFGM limiter gives better results than the linear limiter in terms of less numerical 

noise and better-resolved vortex. 

 

 

Figure 3.20  Pressure contour for 2D shock-vortex interaction, t=0.2. 
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(a)                                                           (b) 

Figure 3.22  Pressure contours for the shock-vortex interaction at �=0.2. 

(Base scheme: 3
rd

-order SD. 61 contours from 0.4~1.29.) 

(a) 3
rd

-order PFGM limiter; (b) Linear limiter. 

       

    (a)                                                           (b) 

Figure 3.21  Pressure contours for the shock-vortex interaction at �=0.05. 

(Base scheme: 3
rd

-order SD. 61 contours from 0.4~1.29.) 

(a) 3
rd

-order PFGM limiter; (b) Linear limiter. 
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(a)                                                             (b) 

Figure 3.24  Pressure contours for the 2D shock-vortex interaction at �=0.6. 

 (Base scheme: 3
rd

-order SD. 90 contours from 1.19~1.37.) 

(a) 3
rd

-order PFGM limiter; (b) Linear limiter. 

0.45 0.9 1.35

0

0.5

1

0.45 0.9 1.35

0

0.5

1

            

(a)                                                           (b) 

Figure 3.23  Pressure contours for the shock-vortex interaction at �=0.35. 

(Base scheme: 3
rd

-order SD. 61 contours from 0.4~1.29.) 

(a) 3
rd

-order PFGM limiter; (b) Linear limiter. 



www.manaraa.com

78 

 

 
 

 

 

 

 

 

(a) 

 

(b) 

Figure 3.25  Pressure contours for the 2D shock-vortex interaction at �=0.8. 

 (Base scheme: 3
rd

-order SD. 90 contours from 1.19~1.37.) 

(a) 3
rd

-order PFGM limiter; (b) Linear limiter. 
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3.6.8 Oblique shock reflection by a wedge 

This example considers a Mach 2 flow passing a wedge of 20°.  Notice that in 3.6.7 

the normal shock is aligned with the grid, while in this example we don’t have this luxury.  

The state ahead of the shock is set to be �ð, 4, ñ, �
 � �1.4, 2, 0, 1
.  The boundary conditions 

are as follows: 1) supersonic inlet at the inlet on the left side; 2) inviscid wall boundary 

condition for the wall; 3) simple extrapolation boundary condition for the upper boundary 

and the outlet on the right end.  A coarse mesh (400 elements, 20 boundary elements) was 

used for this case, as shown in Fig. 24b.  The density contours in Fig. 24a shows that the 

present 3
rd

-order PFGM limiter captured the shock sharply (within one element).  Only the 

cells at the shock are marked (in red), and the typical marked cells when the shock is formed 

are shown in Fig. 24b.  As we can see, the AP-TVD marker works well as expected. 

 

 

  

(a)                                              (b) 

Figure 3.26  Mach 2 flow past a wedge of Ø�° by using the 3
rd

-order PFGM limiter 

with the SD method (400 elements, 20 boundary elements). 

(a) Density contour; (b) Marked cells. 
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3.6.9 Transonic flow over NACA0012 airfoil 

This example is the transonic flow over a NACA0012 airfoil at Mach 0.85 and an 

angle of attack � � 1°, characterized by the existence of two shocks, one on the upper 

surface and one on the lower surface.  To demonstrate the advantage of the present high-

order limiter, we used a relatively coarse mesh (1584 hexahedral elements, 52 elements on 

the upper and lower wall surfaces) as shown in Figure 3.27.  The implicit BLU-SGS scheme 

was employed in a compact form [23] for time integration in this case. 

Figure 3.28(a) shows the Mach contours obtained with the 3
rd

-order PFGM limiter, 

and Figure 3.28(b) gives a snapshot of the typical distribution of the marked cells.  It is 

shown that the present limiter is indeed able to eliminate the spurious oscillations and capture 

the shock discontinuities sharply while maintaining the high-order accuracy at smooth 

regions.  It was noticed that the marked cells are located just in the vicinity of the upper and 

lower shock discontinuities, and the average number of the marked cells during the BLU-

SGS implicit time iterations is a very small percentage (about 2%) of the total number of 

cells.  Therefore it shows that the present AP-TVD marker works well and efficiently for 

multidimensional cases. 
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                           (a)                                           (b) 

Figure 3.28  The transonic flow over NACA0012 airfoil (Ù� � �. þÚ,� � �°) 

by using the 3
rd

-order PFGM limiter in the SD method. 

(a) Mach contours;  (b) the marked cells (red) at the 1000
th

 implicit time step. 
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                                (a)                                                              (b) 

Figure 3.27  The unstructured hexahedral meshes for the NACA0012 airfoil 

in transonic flow (1584 elements, 52 wall boundary elements). 

(a) the whole domain;  (b) close-up view around the airfoil. 
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3.7 Conclusions 

Three design criteria have been set for a general purpose limiter: 1) free of user-

specified parameters; 2) capable of preserving a local degree p polynomial; 3) applicable to 

arbitrary unstructured meshes.  The parameter-free generalized moment (PFGM) limiter 

developed in the present study appears to meet all of the criteria.  The limiter is composed 

two components: an efficient accuracy preserving TVD marker for “troubled cells” based on 

cell-averaged state variables, and a hierarchical generalized moment limiter capable of 

handling arbitrary unstructured meshes.  The PFGM limiter has been implemented and tested 

for a high-order SD method, although it can be easily applied to all other similar high-order 

methods.  The AP-TVD marker is based on the cell-averaged solutions and solution 

derivatives, and is quite efficient to implement.  It appears that smooth extrema are not 

marked, while the discontinuous cells are consistently marked, without the use of any user-

specified parameter.  The AP-TVD marker compares favorably against several markers in the 

literature, such as the TVB marker, KXRCF marker, or the Harten marker.  Accuracy studies 

confirmed that the limiter is capable of preserving accuracy in smooth regions.  Numerical 

tests for a wide variety of problems in 1D and 2D with both discontinuities and smooth 

features demonstrated the capability and usefulness of the PFGM limiter. 
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CHAPTER 4 EFFICIENT LINE IMPLICIT METHOD 

To speed up solution convergence in high Reynolds number flows, in this chapter we  

re-examine the current state-of-art implicit method research and present an efficient line 

implicit solver with several new features including: a) compact scheme combining a line 

BLU-SGS solver for the lined-up cells within the thin boundary layer coupled with a cell 

BLU-SGS solver for other less stiff flow regions; b) low memory storage requirement for the 

implicit method due to the BLU-SGS partial line solver/partial cell solver scheme and an 

efficient low-storage strategy for LU decomposition of the cell Jacobians; c) robust and 

accurate viscous fluxes for anisotropic grids based on the second approach of Bassi and 

Rebay (BR2); d) generic and compact formulation to be programmed as a black box so as to 

be easily applied in general high-order methods.  

4.1 Background and motivation 

 The high-order spatial operators bring benefit of higher-order accuracy.  However 

they are much stiffer than low-order ones, and the stiffness increases with the polynomial 

degree order.  So far the severe stiffness problem is the major drawback that hinders high-

order methods to be applied as widely as low-order methods in industry.  A simple 

illustration for this well-known problem is given in Figure 4.1, where due to the versatileness 

of polynomial interpolation small changes (from green dots to red dots) on the multiple DOF 

values in one cell can cause large shape change (from dash line to solid line) on the cell 

solution profile particularly on the cell interfaces. 
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Figure 4.1  Illustration of stiffness due to high-order spatial operator 

Therefore it is much more difficult to make a high-order simulation converged to 

steady state.  The situation becomes even worse when this stiff spatial operator combines 

with the anisotropy induced stiffness, which is usually caused by highly clustered grids in the 

boundary layer for high Reynolds number viscous flow problems.  In that case the explicit 

time integrator is too slow due to the CFL condition.  The implicit methods allow much 

larger stable CFL number, yet with the drawback of much larger computer memory storage.  

Our research focus here is implicit method with low-storage requirement. 

Despite our focus on implicit methods, it is worthy to note that some representative 

explicit methods have significantly improved stability limit compared with their 

predecessors.  For example, the Fourth-Order Four-Stage Runge-Kutta scheme developed by 

Jameson, Schmidt and Turkel [57] has been used in many production CFD codes (2
nd

-order n 

space) due to its large stability limit.  Another major explicit scheme is the Strong-Stability-

Preserving (SSP) Runge-Kutta Schemes, which was originally developed by Shu [101], and 

Shu and Osher [102] (with its original name as TVD Runge-Kutta schemes) and was further 

studied by many researchers [44,105].  The SSP-RK scheme is more stable due to its TVD or 
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SSP property.  However, for high Reynolds number viscous flows, those above-mentioned 

explicit methods can be one or more order slower than the implicit methods in terms of CPU 

time, as shown in Section 4.6. 

Many an early low-order implicit method ends up with a large nonlinear algebraic 

system with sparse block matrices to be solved iteratively for each temporal iteration step.  

An effective algorithm for such systems is essential even for low-order case.  Currently the 

basic ideas of the implicit methods or multi-grids methods for high-order methods were 

extended from the low-order ones; none of them are specifically designed for high-order 

methods.  Now that there are multiple DOFs in one high-order cell, the computer core 

memory occupied by the cell Jacobian matrices is much larger than that in low-order case.  

For example, the memory requirement for polynomial construction of degree higher than 

three might be prohibitive for a 3D engineering problem.  Therefore the main challenge will 

be to develop effective and low storage implicit methods for high-order operators.  A good 

implicit algorithm can also serve as a “smoother” for geometric or �-multigrid approaches to 

further speed up convergence. 

Many types of implicit algorithms have been successfully developed for unstructured 

grid based solvers in the last two decades, for example, the element Jacobi, Gauss-Seidel, 

precondition GMRES [98,12], matrix free Krylov [93], lower-upper symmetry Gauss-Seidel 

(LU-SGS) [23,99], and line implicit algorithms [80].  The present line implicit method was 

developed by following the philosophy of LU-SGS because of its favorable feature of low-

storage combined with fast convergence due to its unique procedure of inner forward and 

backward sweep iterations. 
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The original LU-SGS approach was developed by Yoon and Jameson [141] to solve 

compressible flow on structured  grids, and demonstrated high  solution efficiency with low 

storage requirements.  Later, it was extended and applied to hybrid structured and 

unstructured grids [103].  Unstructured-grid-based LU-SGS schemes have demonstrated 

performance similar to that on structured grids [99].  In the original LU-SGS scheme, a 

special first-order approximation in numerical flux is employed to linearize the left-hand side 

and result in the reduction of the block diagonal matrices to diagonal matrices.  As a result, 

LU-SGS does not require any extra memory compared to explicit methods and is free from 

any matrix inversion.  All of the off-diagonal matrices still contribute to the implicit operator 

through one forward and one backward sweep of a Gauss–Seidel iteration, thus significantly 

improving efficiency over an explicit scheme.  However the special first-order approximation 

used in the original LU-SGS to give diagonal matrices does degrade convergence rate, 

especially after several orders of convergence [23].  To further improve the convergence rate, 

Chen & Wang [23] and Jameson & Caughey [56] developed a block (preconditioned) non-

linear LU-SGS (BLU-SGS) approach, which ends up with a block diagonal matrix.  The non-

linear BLU-SGS method shows much faster convergence than the original LU-SGS with 

only a small portion of memory usage increase.  The non-linear BLU-SGS also shows faster 

convergence and much less memory required than the Fully Linearized Implicit method even 

for 2
nd

-order case, because i) BLU-SGS only store the diagonal block matrices with no need 

to store off-diagonal matrices; ii) BLU-SGS solves a non-linear system for each time step 

thus achieving faster convergence rate. 

Besides the stiffness due to high-order spatial operator, another kind of stiffness is the 

anisotropy induced stiffness, which is usually caused by highly clustered grids in the 
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boundary layer for high Reynolds number viscous flow problems.  High aspect ratio grids are 

required in order to properly resolve boundary layer and wake regions in high Reynolds 

number viscous flows.  Unfortunately these grids introduce numerical stiffness that severely 

reduces the convergence rate.  Indeed, the higher the Reynolds, the more grid stretching is 

required, and the worse the convergence rate becomes.  This poses particular difficulties for 

simulating flight Reynolds number flows for large aircraft, where the required meshes may 

contain stretching ratios in excess of 100,000 to 1.  One might consider a fully implicit solver 

to handle the presence of highly stretched cells, but the computer time needed in a fully 

implicit solver to compute Jacobian matrices, which costs the major portion of total CPU 

time, grows rapidly with an increasing number of grid cells, particularly in 3D high-order 

cases.  Moreover, the memory usage of a fully implicit solver is too high for practical 3D 

application even in low-order cases, let alone in high-order schemes. 

In fact, the anisotropy induced stiffness arises because the traditional cell implicit 

methods (such as cell LU-SGS) have no strong solution coupling in the strong geometric 

coupling direction of anisotropic cell alignment.  The line implicit solvers create the solution 

lines in the anisotropic regions based on the directions of strong coupling in terms of both 

convection and diffusion, and solve the flow on the lines in a coupled manner to overcome 

the anisotropy induced stiffness, thus obtain much faster convergence rate.  On the other 

hand, the line solvers result in block tri-diagonal system which can be solved efficiently.  

Therefore both physical and numerical features make the line solvers favorable for high 

Reynolds number flows with high aspect ratio mesh.  The idea of line implicit approach has 

been explored for structured grid based flow solvers, for example, approximate factorization 

(AF) and alternating direction implicit (ADI) algorithms are equivalent to applying a “line” 
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implicit scheme in each of the coordinate directions.  In the community of unstructured grids 

based high-order methods, the idea of line-implicit approach was developed by Mavriplis 

[81] and Fidkowski et al. [38] as a smoother for multi-grid solver with different strategies to 

create the solution lines within the unstructured grids. 

The present line implicit method was developed based on the BLU-SGS method and 

line implicit approach with improved efficiency and robustness for high Reynolds number 

flows. 

4.2 A compact and generic non-linear BLU-SGS formulation 

The intrinsic compact feature of the residual operator in the non-linear BLU-SGS 

method allows us to program a compact and generic cell implicit solver to be applied as a 

black box by general high-order CFD methods.  Consider the following hyperbolic 

conservation law 

 
3:3� � 5 · " � 0, (4.1) 

where : is the local DOFs, and F is flux (inviscid and/or viscous flux).  Its semi-discretized 

equation for a compact high-order method on the current cell c at time level n+1 can be 

formulated in a general form as, 

 �� 3:ª�3� � gª�s:ª�z��, :ªz�z��t, (4.2) 

where :ª  is the global DOFs in a cell, and �� is a relatively small cell-based “mass matrix”.  

gª� is the global spatial residual of the current cell c.  The subscript “c” denotes for current 

cell and “nb” for neighboring cells.  �� is an identity matrix in the FV, SV and SD methods, 

but not in the DG method.  For the followings we set �� � 1 for simplicity since only the 
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FV, SV, and SD methods are employed to test the present implicit solver.  g� is a function of 

the current cell and its neighboring cells, therefore (4.2) is coupled with those equations for 

other cells in the domain to form a large system of first-order differential equations. 

The Backward Euler scheme for temporal discretization of (4.2) gives, 

 
Δ:ª�z��Δ� � gª�s:ª�z, :ªz�z t � 3gª�3:ª� Δ:ª�z�� � F 3gª�3:ªz� Δ:ªz�z��,z�  (4.3)  

where Δ:ªz�� � :ªz�� � :ªz.  Here only first-order time difference is used as an example; the 

extension to 2
nd

-order or higher temporal discretization is straightforward.  Notice that 
��ª�
��ª� is 

the diagonal block element and 
��ª�
��ª�� for off-diagonal block elements.  The essence of LU-

SGS is to keep diagonal terms implicitly and off-diagonal terms “formal explicitly” while 

doing multiple inner sweeping iteration steps back and forth within one time step to account 

the nonlinearity from the off-diagonal terms.  Denote k as an inner sweeping step, then (4.3) 

is solved through, 

 
Δ:ª����Δ� � gª�s:ª�z, :ªz�z t � 3gª�3:ª� Δ:ª���� � F 3gª�3:ªz� Δ:ªz����.z�  (4.4)  

where Δ:ª��� � :ª��� � :ªz.  Further manipulation of terms in (4.4) yields, 

 	 TΔ� � 3gª�3:ª�
�:ª���� � gª�s:ª�z, :ªz�z t � 3gª�3:ª� Δ:ª�� � F 3gª�3:ªz� Δ:ªz����
z� � TΔ� Δ:ª�� (4.5)  

which can be simplified as, 

 	 TΔ� � 3gª�3:ª�
�:ª���� � gª�s:ª�z, :ªz����t � Δ:ª��Δ� , (4.6)  

where �:ª���� p Δ:ª���� � Δ:ª�� � :ª���� � :ª��.  At k+1 inner sweep step, not all the 

neighbors :ªz���� have been updated in (4.6).  Then the latest available values :ªz��  are used for 

:ªz����, and (4.6) becomes 
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 	 TΔ� � 3gª�3:ª�
�:ª���� � gª�s:ª�z, :ªz�� t � Δ:ª��Δ� , (4.7) 

Note that here we actually solve the non-linear system (4.3) at each time step by using 

(4.7).  The left-hand-side matrix (a diagonal preconditioner) is a cell-based local matrix with 

size of �# !"# ��¤ 	�¥¥
9, depending on spatial accuracy order, for example, 24 � 24 for a 

3
rd

-order 2D problem.  The right-hand-side is actually the latest unsteady residual for the 

current cell c, and can be treated as a black box.  If the residual for each cell is found from 

the DOFs on the current cell and its neighbors, the small matrix in (4.7) is easily solved by 

using LU decomposition technique to update the DOFs.  Therefore the solver for (4.7) can be 

programmed as a compact black box which is independent of numerical flux formulation or 

spatial discretization in general sense.  This is significant because in high-order case the 

spatial reconstruction can be complicated.  Either iteration error or maximum sweep iteration 

steps can be used to control inner iteration numbers.  The efficient way to store the left-hand-

side matrix is to only store its LU decomposition matrices instead of itself.  Also as a 

variation, the costly left-hand-side matrix can be frozen for some time steps to further save 

computer time. 

4.3 The BR2 viscous flux for the SD method 

How to accurately and efficiently formulate the viscous fluxes is of importance not 

only for solution accuracy but also for convergence rate.  Many efforts have been made to 

formulate viscous flux in context of high-order methods, and the major methods include the 

averaging scheme [60,61], the local DG scheme (LDG) by Cockburn and Shu[25], the 

second approach of Bassi and Rebay (BR2) by Bassi et al. [13] for the DG method, the 

interior penalty (IP) method by Douglas and Dupont [35] and Kannan and Wang [59], the 
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Recovery scheme for DG by van Leer et al. [123,124], and more recently flux reconstruction 

scheme by Hyun [54], etc. 

From our tests in Section 4.5 it has been found that the BR2 scheme is more robust 

than the simple averaging gradient scheme for highly stretched grids.  The BR2 scheme is 

compact with only immediate neighboring cells involved within.  In the followings the BR2 

scheme, which was originally developed for DG method, is re-formulated in context of the 

SD method. 

We only consider 2D quadrilateral or 3D hexahedral meshes in the boundary layers, 

which are generally used in high Reynolds number flows due to the well-known fact that 

quadrilateral or hexahedral meshes are more robust and efficient than triangular or tetrahedral 

meshes in boundary layer region.  Suppose two adjacent cells on the left and right of a 

common interface, respectively, as shown in Figure 4.2. 

 
The viscous part of the flux vector in (4.1), "�*¶ � "�*¶�:, 5:
 is a function of both 

solution and solution gradient.  In BR2 the common interface solution value is given by 

 :���� � 12 <:�� � :��> (4.8)  

and the gradient on the interface can be computed as 

 5:���� � 12 <5:� � 5:�> � �� � 1
92 < 1
� s:���� � :�t � 1
� �:��� � :�
>HIJ (4.9)  

  

Figure 4.2  BR2 viscous flux scheme on quadrilateral or hexahedral mesh 

L R 


� 
�
 common face 
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where � � 1 is the scheme accuracy order, 

respectively, and HIJ is the interface normal.

The present line solver was developed based on non

preserves its nice features of low

compactness.  However, in the boundary layer regions with highly

line implicit method creates the solutions lines and solves the flow on the lines in a coupled 

manner to overcome the anisotropy induced stiffness, thus obtain much faster convergence 

rate than the pure cell BLU-SGS method.

Suppose highly stretched grids used in the boundary layer as shown in Figure 4.3, we 

connect several cells along the wall normal direction to f

bottom wall cell.  The cell numbers lined

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3

Cell i-1 and cell i+1 are also two of the neighboring cells for the current cell 

(4.3) we have 

92 

is the scheme accuracy order, 
� and 
� are the left and right cell size, 

is the interface normal. 

4.4 Line implicit method 

The present line solver was developed based on non-linear BLU-SGS method and 

preserves its nice features of low-storage, non-linear solution procedure, and generic 

compactness.  However, in the boundary layer regions with highly-stretched grids the present 

line implicit method creates the solutions lines and solves the flow on the lines in a coupled 

me the anisotropy induced stiffness, thus obtain much faster convergence 

SGS method. 

Suppose highly stretched grids used in the boundary layer as shown in Figure 4.3, we 

connect several cells along the wall normal direction to form a solution line from each 

bottom wall cell.  The cell numbers lined-up on each solution line can be different.

Figure 4.3  Lined-up cells in boundary layer 

+1 are also two of the neighboring cells for the current cell 

i+1 

i 

i-1 

are the left and right cell size, 

SGS method and 

linear solution procedure, and generic 

stretched grids the present 

line implicit method creates the solutions lines and solves the flow on the lines in a coupled 

me the anisotropy induced stiffness, thus obtain much faster convergence 

Suppose highly stretched grids used in the boundary layer as shown in Figure 4.3, we 

orm a solution line from each 

up on each solution line can be different. 

+1 are also two of the neighboring cells for the current cell i.  From 
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Δ:ª*z��Δ� � gª*s:ª*z, :ªz�z t � F 3gª*3:ªz� Δ:ªz�z��
z�»*o�,*��                                      

� 3gª*3:ª*o� Δ:ª*o�z�� � 3gª*3:ª� Δ:ª*z�� � 3gª*3:ª*�� Δ:ª*��z�� 

(4.10)  

where R � 2, … , H	¥.  H	¥ is the total number of cells on the line.  Similar to the cell BLU-

SGS procedure, applying inner sweeps to (4.10) yields 

 

	� 3gª*3:ª*��
�:ª*����� � 	 TΔ� � 3gª*3:ª*
�:ª*��� � 	� 3gª*3:ª*o�
�:ª*o����
� gª*s:ª*z, :ªz�� t � Δ:ª*�Δ� , Hx Å R � 1, R � 1. (4.11)  

The three left-hand-side matrices in (4.11) are computed numerically similarly as done in the 

cell matrix-free implicit solver.  Assume a small quantity ú (i.e. ú � 10o�), then a cell-based 

LHS Jacobian matrix in (4.11) can be computed by using the incremental residual due to a 

small incremental solution value with each DOF on the cell, 

 
3gª*3:ª*�� �

gª*s:ª*, :ª*�� � ú, :ªz�t �  gª*s:ª*, :ª*��, :ªz�tú , Hx Å R, R � 1, (4.12)  

 
3gª*3:ª* �

gª*s:ª* � ú, :ªz�t �  gª*s:ª*, :ªz�tú , Hx Å R, (4.13)  

 
3gª*3:ª*o� �

gª*s:ª*, :ª*o� � ú, :ªz�t �  gª*s:ª*, :ª*o�, :ªz�tú , Hx Å R, R � 1. (4.14)  

Note gª*s:ª*, :ª*��, :ªz�t � gª*s:ª*, :ªz�t � gª*s:ª*, :ª*o�, :ªz�t, all of which express the 

same residual for a DOF on the cell.  Therefore a time-saving procedure is to compute the 

non-incremental residuals first for all the cells in the domain, then compute the incremental 

residuals for a cell, as shown in the CPU time tests in Section 4.5.4.  The block tri-diagonal 

matrix formed in (4.11) can be solved efficiently using the block LU decomposition 

algorithm.  
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As seen here the lined-up cells are solved in a strong coupled manner by keeping all 

them implicitly in the left-hand-side matrix (preconditioner).  The non-linear equation (4.10) 

is still solved at each time step without further linearization by using inner iterations and the 

latest available updates for the other neighbors.  To achieve maximum efficiency, outside the 

anisotropic boundary layer region the cell-based BLU-SGS is applied.  Therefore an inner 

sweep procedure starts from a forward line solver for the anisotropic boundary layer regions 

so as to relieve the stiffness before further computations, then a forward cell solver followed 

by a backward cell solver for other regions, finally a backward line solver for the boundary 

layer region. 

The algorithm given in (4.11) is compact and generic, independent of spatial 

discretization.  It can be used as a black box to speed up high-order cell-based implicit 

method in general. 

In this study, various solution line constructions including some of those proposed in 

[81,38] have been tested, and we found that based on the present partial cell/partial line 

BLU-SGS method, the anisotropy stiffness is indeed concentrated in the thin boundary layer 

near wall, and it seems that the simple line construction method of uniformly lining up 

several layers of grids above wall gives the satisfactory results to relieve the stiffness. 

4.5 Numerical tests 

The present line implicit method has been tested rigorously with a variety of 

numerical cases for its convergence rate.  To demonstrate the true performance of the line 

solver, the best possible base cell solver, i.e. BLU-SGS method is first tested, then the 
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convergence rate from the line solver is compared with the best results from the cell implicit 

solver. 

4.5.1 Finite volume method test on the cell BLU-SGS solver 

The present generic cell BLU-SGS formulation is tested with a face-based Finite 

Volume method developed by the present author by using simple subsonic inviscid flow 

around a NACA0012 airfoil, ��	
 � 0.5, � � 0°. The inviscid Riemann flux is 

approximated by Rusanov flux.  The explicit scheme used for comparison is three-stage TVD 

Rounge-Kutta scheme.  A triangular and quadrilateral mixed mesh is used as in Figure 4.4(a).  

Figure 4.4(b) gives the symmetric flow field result of Mach contours as expected.  As shown 

in Figure 4.5 the present cell implicit method is much faster than the explicit method, which 

validates the present cell LU-SGS method coupled with the FV scheme. 

 

 

 

 
(a)                                                                  (b) 

 

Figure 4.4  Subsonic inviscid flow around NACA0012. 

(a) Mixed mesh;  (b) Mach contours. 
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4.5.2 Quadrature-Free SV method test on the cell BLU-SGS solver 

The present generic cell BLU-SGS formulation is also tested with the Quadrature-

Free SV method developed in Chapter 2 of the present dissertation by using the same test 

case (Figure 2.9) as in Section 2.4.4 as discussed in Chapter 2, i.e. the subsonic inviscid flow 

���	
 � 0.2
 around a 2D cylinder with curved boundary enforced in the boundary 

treatment.  The inviscid Riemann flux is approximated by Rusanov flux.   The explicit 

scheme used for comparison is three-stage TVD Rounge-Kutta scheme.  Figure 4.6 shows 

the convergence history on the coarse triangular grids �16 � 8 � 2
 for 3
rd

-order and 4
th

-

order cases.  As shown in Figure 4.6, the maximum stable CFL number for the explicit 

method is Q"8 � 0.8, which is much less than that of the present implicit cell method, 

Q"8 � 150.  It is also shown that both the iteration steps sand CPU time needed for the 

present cell implicit method to converge to machine zero is much faster than the explicit 

 
Figure 4.5  Comparison of convergence rate for NACA0012 subsonic flow. 
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method.  At first look it seems that the explicit method is too slow compared with the implicit 

method in Figure 4.6, but actually this is well-known true in general for high-order methods, 

therefore the present cell BLU-SGS method coupled with the QFSV scheme is valid. 

 

 

 
 

 

 

 

 
(a)                                                                  (b) 

 

Figure 4.6  Subsonic inviscid flow around cylinder. 

(a) Iteration steps;  (b) CPU time. 
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4.5.3 Test of SD with BR2 viscous flux on the cell BLU-SGS solver 

Here we only test the effectiveness of the BR2 viscous fluxes with the Spectral 

Difference method coupled with the cell BLU-SGS solver.  Other validations for SD with 

BLU-SGS can be found in [110,108].  The test case is a subsonic viscous laminar flow 

around NACA0012 with separation.  The Reynolds number is 5000, ��	
 � 0.5, � � 0°.  

The two coarse grids used are: 1) total cell number = 640 and maximum wall grid aspect 

ratio AR= 60; 2) total cell number = 960 and maximum wall grid aspect ratio AR= 100.  The 

results from the 2
nd

-order, 3
rd

-order, and 4
th

-order schemes are given in Figure 4.7 and Figure 

4.8.  Figure 4.7 shows the converged flow fields of Mach contours with the second grids (960 

cells, AR=100) for different order of schemes.  Also given in Figure 4.7 is the grids 

distribution, which is actually coarse compared with the usual grids used for low-order 

schemes.  The converged surface friction results from both the upper and lower wall of 

NACA0012 are given in Figure 4.8.  The results shows good flow symmetry around Y-

direction as expected.  It shows that on both of the two coarse grids the 3
rd

-order and 4
th

-

order schemes predict the separation point much better than the 2
nd

-order scheme, because 

the 3
rd

-order and 4
th

-order results converge together, but 2
nd

-order does not, as seen from the 

close-up views on the right side. 
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(a) 2

nd
-order 

 

 
(b) 3

rd
-order 

 

 
(c) 4

th
-order 

 

Figure 4.7  Mach contours for subsonic viscous flow around NACA0012. 

Mach=0.5, Re=5000.  Grids: 960 cells, Maximum AR=100. 



www.manaraa.com

100 

 

 

4.5.4 CPU time test for line implicit solver 

CPU time costs are compared between the present BLU-SGS and the cell BLU-SGS 

method in Table 4.2 and Table 4.3 for 3D cells to verify the efficiency of the present 

numerical approach for LHS matrix computation and the present block tri-diagonal matrix 

 
(a)                                                                  (b) 

 

    
(c)                                                                  (d) 

 

Figure 4.8  Surface friction coefficient for viscous flow around NACA0012. 

Mach=0.5, Re=5000. 

(a) 640 cells, Maximum AR=60; (b) Close-up view for (a); 

(c) 960 cells, Maximum AR=100; (d) Close-up view for (c); 
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solver.  The full line solver with all the cells on the normal direction lined-up is used for easy 

distinguish from the cell implicit solver.  The line solver has two more matrices to compute 

with size per cell as listed in Table 4.1.  Table II gives the CPU times from a flat plate test 

case with straight-facet (linear) cells, where one time computation for the LHS matrices on 

the whole domain and one inner forward and backward sweep are given for both the cell 

BLU-SGS method and the present line BLU-SGS method.  The line solver costs 2.4, 3.1, and 

4.8 times CPU as much as the cell solver for 2
nd

-order, 3
rd

-order, and 4
th

-order schemes, 

respectively.  Beside the major fact that there are two more matrices (off-diagonal) per cell in 

the line solver than in the cell solver, so the matrix cost can be 3 times as much as that in the 

cell solver, there are two opposite side effects on the above cost factors: 1) LU 

decomposition costs more CPU in higher-order matrix than in lower-order one; 2) No need to 

repeat the computation of the common non-incremental residuals for each cell matrix (by 

computing them first for all the cells on the domain) saves CPU time.  In 2
nd

-order case, the 

second side effect surpasses the first effect, resulting in the factor of 2.4 less than 3; in 3
rd

-

order case, both the two side effects almost balances to give the factor of 3.1; in the 4
th

-order 

case, LU decomposition costs a lot more than the saving from the common residual 

computations, thus the factor of 4.8 is bigger than 3. 

  Also Table II gives the CPU cost for one inner iteration step.  It shows that the 

present efficient algorithm for block tri-diagonal matrix system costs is competitively close 

to that of 2
nd

-order scheme; for 3
rd

-order and 4
th

-order the ratio of the line solver and cell 

solver is close to the optimal factor of 3.  Similar results are shown in Table III for 

NACA0012 with curved (quadratic) cells on wall boundary, and almost the same optimal 

ratio is obtained as the straight-facet linear cell case.  
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Table 4.1.  LHS Matrix size per cell 

Order Cell BLU-SGS Line BLU-SGS Ratio 

2 409 3 � 409 1 

3 1359 3 � 1359 11.4 

4 3209 3 � 3209 64 

 

Table 4.2.  CPU time (sec) test on flows on flat plate (grids �� � Ø� � � cells) 

Order 

LHS 
Ratio 

L/C 

One inner iteration 
Ratio 

L/C 
Cell 

BLU-SGS 

Line 

BLU-SGS 

Cell 

BLU-SGS 

Line 

BLU-SGS 

2 1 2.36 2.4 0.071 0.096 1.4 

3 9.2 28.3 3.1 0.324 0.81 2.5 

4 58.3 281.8 4.8 0.920 2.76 3.0 

 

Table 4.3.  CPU time (sec) test on flows around NACA0012 (grids 768 cells) 

Order 

LHS 
Ratio 

L/C 

One inner iteration 
Ratio 

L/C 
Cell 

BLU-SGS 

Line 

BLU-SGS 

Cell 

BLU-SGS 

Line 

BLU-SGS 

2 1.3 3.0 2.3 0.093 0.12 1.3 

3 11.8 36.6 3.1 0.41 1.0 2.4 

4 74.9 357.8 4.8 1.2 3.4 2.8 

 

4.5.5 Robustness test for the line implicit solver 

To test if the line implicit solver is more robust than the cell solver for high Reynolds 

number flows, a relatively extreme case is used: 4
th

-order scheme, Reynolds number� 10�, 

Mach=0.3, flat plate boundary layer flow, three coarse grids with 30 � 20 cells and three 

different maximum aspect ratios: max AR=100, 1000, 10000.  The CFL number starts from 

Q"8º � 0.01, then increases exponentially as iteration steps according to Q"8z � Q"8º �
1.2z until reaching a maximum CFL.  Figure 4.9(a) shows the expected good convergence to 
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machine zero from the full line solver (with all the cells in wall normal direction lined up for 

each line).  But the cell solver failed in this case: the iteration blows out after about 70 steps, 

as seen in Figure 4.9(b). 

4.5.6 Grid aspect-ratio insensitivity test for the line implicit solver 

The line implicit method eliminates the anisotropy stiffness by lining-up the cells in 

normal direction.  The insensitivity of convergence rate to varying grid aspect ratios in the 

present line implicit method has already been demonstrated in Figure 4.9 (a) for 4
th

-order.  

Figure 4.10 shows the results for 2
nd

-order and 3
rd

-order cases, with Reynolds number� 10�, 

Mach=0.3, flat plate boundary layer flow, three coarse grids with 30 � 20 cells and three 

different maximum aspect ratios: max AR=100, 1000, 10000. 

4.5.7 2D viscous flow over flat plate with line implicit solver 

Figure 4.11 gives the solution lines in different colors.  Only several grid layers near 

the wall are lined up.  It has been tested out that this simple uniformly lining-up achieves the 

best convergence results. 

Figure 4.13 compares the convergence rate for a 2D flat plate boundary layer flow at 

��	
 � 0.3, Reynolds number � 10ß for 2
nd

- and 3
rd

-order, and 10� for 4
th

-order.  The 

higher Reynolds number is used for 4
th

-order to show advantage of high-order scheme for the 

same grids.  The grids with total of 30 � 20 cells are clustered near wall and leading edge of 

the flat plate.  The maximum aspect ratio for wall grids is 225.  12 layers of cells are lined-up 

for 2nd- and 3rd-order, and 6 layers for 4th-order.  The comparisons are played on the “fair 

ground” by tuning the cell solver to be fastest in each case.  .  It is shown that much less 
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iteration steps (for example one order less steps for the 3
rd

-order case) needed for the line 

solver than the cell solver, which demonstrates the effectiveness of the present line solver to 

relieve anisotropy stiffness.  The more interesting results are the significant savings (one to 

three times) on CPU time obtained from the line solver compared to the cell solver.  Among 

them, the 3
rd

-order scheme performs best in terms of computer time saving. 

4.5.8 Subsonic viscous flow around NACA0012 with line implicit solver 

This case is to test the present line implicit method on curved boundary with non-

linear (quadratic) boundary cells.  A subsonic laminar flow around NACA0012 with 

��	
 � 0.5, Reynolds number =5000 is computed by using a coarse grid with total of 960 

cells and maximum wall grid aspect ratio of 100.  The uniform line construction for several 

layers of cells near wall is illustrated in Figure 4.12 with the lines in different colors.  Again 

this simple line construction gives good performance of convergence as used in the flat plate 

boundary layer cases. 

Figure 4.14 compares the convergence rates of the present line implicit method by 

using different number of cell layers lined-up near wall.  As seen in this case the optimal 

layer numbers in terms of CPU cost for the 2
nd

, 3
rd

-, and 4
th

-order schemes are 7, 9, and 7, 

respectively (in 4.13(c) the computation is deliberately stopped for other layer number once 

we found the optimal one is good enough.)  The balance of combining the cell sweeps and 

line sweeps reaches its best from the above optimal layer numbers in this NACA0012 test 

case.   These best results from the present line BLU-SGS solver are compared with the best 

results from the pure cell BLU-SGS solver in Figure 4.15.  It is shown that the line solver is 

about twice as fast as the cell solver for the 2
nd

- and 3
rd

-order cases.  For the 4
th

-order case, 
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the line solver yields more than one time decrease of iteration steps compared with the cell 

solver, which shows the effectiveness of the line solve to overcome the anisotropy stiffness. 

But in this case, the line solver does not show much CPU time saving in this 4
th

-order case, 

partly because here the size of the LHS matrices is much larger than 2
nd

- and 3
rd

-order cases. 

4.6 Conclusions 

A low-storage, efficient and robust line implicit solver has been successfully 

developed to overcome anisotropy stiffness due to highly stretched grids in high Reynolds 

number boundary layer flows.  The efficiency and robustness of the cell solver is important 

for building a line solver based on it.  A compact formulation of the cell-based Block LU-

SGS method is given and a generic cell-based implicit solver has been developed to be 

served as a black box for general use in implicit methods to speed up solution convergence, 

and its effectiveness has been demonstrated in the FV, SV, and SD methods.  The second 

approach of Bassi and Rebay viscous flux (BR2) that was originally developed for DG 

methods has been coupled into the SD methods to enhance robustness of the cell implicit 

solver.  The new line implicit method overcomes anisotropy stiffness by direct coupling the 

neighboring cells in the wall normal direction while preserving the low-storage and 

compactness features of the original BLU-SGS method.  Up to 3 times of saving on CPU 

time has been demonstrated compared with the cell BLU-SGS solver.  The present line 

implicit method also shows better robustness than the cell BLU-SGS solver in some high 

Reynolds number flows with high-order scheme.  The present line implicit method is 

formulated in a compact and generic form and the solver has been programmed as a black 

box so as to be easily applied in general high-order methods. 
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nd
-order                                                    (b) 3

rd
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Figure 4.10  Robustness test for full line solver with 2D flat plate flow. 

Re=10�, Mach=0.3, coarse mesh 30x20 cells. 
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                        (a) The full line solver                                   (b) The cell solver 

Figure 4.9  Robustness test for full line solver with 2D flat plate flow. 

4
th

-order scheme, Re=10�, Mach=0.3, coarse mesh 30x20 cells. 
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Figure 4.12  Grids and solution lines near wall for NACA0012 subsonic flow. 

 
(a) 

 
(b) 

Figure 4.11  Grids and solution lines for flat plate boundary layer. 

(a) The whole domain; (b) Close-up view near wall. 
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Figure 4.13  Comparisons of convergence for flat plate boundary layer. 

Maximum AR=225, Coarse mesh �� � Ø�, Mach=0.3, �� � ��� for 2
nd

-, 3
rd

-order, 

and ��Ú for 4
th

-order. “Point” denotes for the cell BLU-SGS solver, “Line” for the 

present line BLU-SGS solver, “np” for accuracy order, “CFL” for best available 

CFL number. 12 layers of cells lined-up for 2
nd

- and 3
rd

-order, and 6 layers for 4
th

-

order. Solid line: line solver; Dashed line: cell solver. 
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Figure 4.14  Convergences with different layer numbers of lined-up cells. 
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Figure 4.15  Convergences for NACA0012 laminar flow. 

 Red line (“Line”):  the present line solver; Blue line (“Point”): the cell solver. 
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CHAPTER 5 HIGH-ORDER UNSTRUCTURED MESH GENERATION 

In this chapter, we propose a novel and fully automatic algorithm that guarantee to 

resolve a common problem in high-order mesh generation, i.e. the gridline intersection 

problem for anisotropic 3D hexahedral boundary cells used in high Reynolds number flows.  

The present method is robust and fast for correction of self-intersection without changing the 

basic aspect ratio of the original grids or degrading the original grid quality. 

5.1 Introduction 

The curved boundaries should be accordingly represented by high-order boundary 

mesh in a high-order method.  The linear mesh cells (with line-segments or planar facets) 

used to represent the curved boundaries in second order simulations is compatible with the 

linear data interpolations used in a second-order method.  But for high-order methods, the 

error generated from the linear element representation for curved boundary must eventually 

affect not only the boundary region, but also transport elsewhere in the flow field resulting in 

degraded accuracy order and rendering uselessness of a higher-order scheme [13,126].  One 

can always use very fine linear cells on curved boundary to reduce this error, but cannot 

eliminate its pollution effect.  Moreover, coarser mesh is actually expected in a high-order 

method; otherwise it loses its advantage compared with a low-order method.  Currently the 

ability to generate suitable high-order meshes (at least quadratic for curved boundary) for 3D 

complex geometries is a significant limiting factor for applying high-order methods in 

industry, because almost all the available grid generation packages can only generate linear 

cells. 
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The traditional low-order mesh generation package only relies on the linear segments 

or planar facets, it has no knowledge of the real shape of the boundary.  The usual ways to 

generate unstructured volume mesh with curved boundary is the so called “direct generation” 

method, which generates extra boundary vertices directly on the underlying representation of 

the curved boundary given by NURBS from a commercial CAD package.  For the extra 

boundary vertices, there are various surface mesh generation algorithms, which can be 

classified as either 2D parametric space [67,41,20,32,116] or direct 3D [34,73,37,19,15].  

However, the problem of the formation of high-order cells on arbitrary 3D surfaces is still 

under research.  Besides, all the issues that have been addressed in traditional 2
nd

-order mesh 

generator, such as mesh quality-control, intersection check, and automatic generation as well 

as adaptive, anisotropic, parallel mesh generation, and geometry management, needs to be re-

examined to produce a commercial high-order mesh generation package, which means to 

abandon the previously well-developed low-order mesh generator and re-invest huge amount 

of efforts for a brand-new one. 

Another approach as a shortcut to generate high-order boundary mesh still utilizes the 

traditional low-order mesh generation package.  Unlike the above direct way, first a low-

order linear mesh is generated from the traditional mesh generation package, then extra 

vertices (depending on accuracy order needed) are topologically inserted into a low-order 

linear cell near the curved boundary, finally the newly inserted vertices are geometrically 

moved back to the curved boundary.  This method serves as a post-processing step for the 

traditional mesh generator.  This post-processing step does not cost much additional time and 

indeed saves the usefulness of the mesh generation package for curved boundary cells, yet 

except one problem educed from the insertion.  The problem is self-intersection caused by 
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curved cell faces that are too close to each other and may overlap.  As an example, for the 

highly stretched boundary cells that used in high Reynolds number flow, a newly generated 

boundary gridline by inserting vertices might be intersected with some interior gridlines near 

the curved boundary, as illustrated in Figure 5.1. 

 

 

 

 

 

 

 

The self-intersection problem is very common in high-order mesh generation and 

makes the mesh invalid in CFD simulations, thus should not be allowed.  In this chapter a 

novel and fast algorithm has been developed to resolve intersections of boundary grid layers. 

5.2 Algorithm 

We only consider unstructured hexahedral mesh, which is usually used in high 

Reynolds number boundary layer flows.  If the curved boundary cell is highly stretched, the 

self-intersection can happen in probably two ways: 1) any of the boundary edges of the 

boundary cell could intersect with the inner edge on the same face (Figure 5.2a); 2) some 

local extrema points on the boundary face could intersect with the opposite inner face (Figure 

5.2b).  The second case indicates that the mesh is too coarse to correctly represent some main 

geometric features of the curved boundary, therefore back to the linear mesh generation step, 

 

 

 

 

 

Figure 5.1  A self-intersected cell on curved boundary. 

Black line: Curved wall; Blue line: Gridline for linear cell; Red 

dash: Boundary gridline for quadratic cell; Green dot: Inserted 

vertex. 
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mesh refinement or adjustment has to be done in the mainstream flow direction.  After that 

the self-intersection problem is transformed to the first case. 

 

                          (a)                                                                      (b) 

Figure 5.2  Curved boundary face for a non-linear cell. 

(a) Edge intersection; (b) local extremum on curved boundary face. 

Suppose a curved wall boundary that is approximated by a quadratic boundary curve, 

as illustrated in Figure 5.3.  The quadratic boundary gridline is intersected with the linear 

interior gridline due to the stretched cell on the curved wall.  We fix this problem by curving 

the interior edge Q CCCC (red solid line) into Q �  (red dashed line).  First a self-intersected 

boundary cell are identified if 

 0�9 Ê 7�	�À¤ · 0�A, (5.1) 

where 0�9 and 0�A are the distance between point 1 and 2, and between point 1 and 3, 

respectively.  Point 1, 2, and 3 denote for the mid-points on linear boundary gridline segment 

(between point A and B), curved boundary gridline segment, linear interior gridline segment 

(from C to D), respectively.  7�	�À¤ Ü 1 is a safety factor, and usually set 7�	�À¤ � 0.5. 
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Figure 5.3  Curved edges for a non-linear cell. 

Blue solid line: Linear boundary gridline; Blue dashed line: Quadratic boundary line; 

Red solid line: Linear interior gridline; Red dashed line: Curved interior gridline. 

 

Then the interior gridline that is intersected with the curved boundary gridline is 

curved by lifting the mid-point (from point 3 to point 4) according to, 

  ¤Jß � ¤JA � 0J, (5.2) 

where ¤JA and ¤Jß are the coordinates for the mid-points 3 and 4, respectively;  0J �
¤J9 � ¤J�, and ¤J� and ¤J9 are the coordinates for the mid-points 1 and 2, respectively.  As seen 

here, the basic aspect ratio of the original mesh is not changed. 

The above procedure is repeated for other edges of the interior cell until no interior 

cell needs to be modified.  A recursive adjustment procedure is then applied to all the 

boundary cells.   

This correction algorithm for self-intersection is fast because actually only a few grid 

layers above the wall need to be modified.  Extension of the present algorithm to cubic cell or 

other high-order cell is straightforward.  The isoparametric cell method widely used in high-

order Finite Element method is still valid here to map the curved hexahedral cells (now 

including some interior cells) into standard cubic cell. 

2 

3 

4 

C 

A 
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D 
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5.3 Test results 

In the following tests hexahedral cells are used for unstructured mesh, but we will 

only show the self-intersection problem in the wall normal direction.  Since these are 

unstructured meshes, the problem is identical in other directions with curved boundary.  

Figure 5.4 shows a test on a simple domain with 8 cells including 2 curved boundary cells.  

The two curved (quadratic) boundary gridlines is found to intersect with the two interior 

gridlines, respectively, in the original mesh in Figure 5.4(a).  Figure 5.4(b) shows that the 

self-intersection is corrected by curving the two next upward interior edges after using the 

present algorithm with  factor=0.5.  Figure 5.4(c) shows that more interior edges are curved 

if using smaller  factor=0.2. 

Figure 5.5 gives the test results from NACA0012 airfoil with total of 640 cells, 

maximum AR=60 by setting factor=0.5.  Besides the boundary cells, some interior cells near 

wall are also marked to be modified as curved (quadratic) cells, which clearly shows that the 

present algorithm for correction of self-intersection is necessary and valid.  Figure 5.6 gives 

zoom-in view for some leading region part with comparisons between the original mesh and 

the modified mesh.  It shows that the present algorithm has successfully resolved the self-

intersection problem for the highly stretched cells near the curved wall. 
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(c) 

Figure 5.4  Comparison test on curved boundary on a simple domain. 

(a) Original mesh; (b) modified mesh, factor=0.5; (c) modified mesh, factor=0.2. 

Blue line: Interior gridline; Red line: Curved boundary gridline. 
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Figure 5.5  Curved boundary test on NACA0012. 

Total 640 cells, maximum AR=60, factor=0.5. 

Red color mark: curved cells. (b) is the close-up view in (a). 
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Figure 5.6  Comparison test on curved boundary on NACA0012. 

Zoom view of local leading edge region. Total 640 cells, maximum AR=60. 

Red line: curved boundary gridline; Blue line: interior gridline. 

(a) Original mesh; (b) modified mesh, factor=0.5. 



www.manaraa.com

120 

 

5.4 Conclusion 

A guaranteed algorithm to resolve self-intersection problem in high-order mesh 

generation is presented, which is robust and fully automatic.  The present algorithm offers the 

advantage of correcting grid self-intersection without changing the basic aspect ratio of the 

original grids or degrading the original grid quality.  The present algorithm has been 

successfully carried out for solving the gridline intersection problem with anisotropic 

quadrilateral and hexahedral boundary cells used in high Reynolds number flows. 

 

 



www.manaraa.com

121 

 

CHAPTER 6 SUMMARY AND FUTURE WORK 

Several new methods have been developed to meet the critical and diversified 

challenges in the state-of-art unstructured-grids based high-order methods for 3D real-world 

applications: 

1.  Parameter-free high-order generalized moment limiter for arbitrary mesh.  Firstly 

the discontinuity marker created in this method does not need any user-specified free 

parameter to detect the discontinuities and exclude the smooth extrema.  Secondly the limiter 

has been designed to be naturally compact and efficient.  Finally it is generic, which can be 

applied to arbitrary mesh and all the high-order methods. 

2.  Efficient line implicit solver with several new features including: 1) a scheme of a 

line BLU-SGS solver for the lined-up cells within the anisotropic thin boundary layer 

coupled with a cell BLU-SGS solver for other regions of less anisotropy stiffness, which 

significantly improves convergence rate for highly stretched wall grids.  Up to 3 times of 

saving on CPU time has been demonstrated compared with the cell BLU-SGS solver.  The 

present line implicit method also shows better robustness than the cell BLU-SGS solver in 

some high Reynolds number flows with high-order scheme.  The present line implicit method 

is formulated in a compact and generic form and the solver has been programmed as a black 

box so as to be easily applied in general high-order methods. 2) low memory storage 

requirement due to the partial line solver/partial cell solver scheme and an efficient low-

storage strategy for LU decomposition of the cell Jacobians; 3) robust and accurate viscous 

fluxes for anisotropic grids based on the second approach of Bassi and Rebay (BR2); 4) 
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generic and compact formulation and coding as a black box so as to be easily applied in 

general high-order methods.  

 3.  Efficient quadrature-free SV methods for 3D application.  This approach has 

improved the original SV method by replacing the large number of quadrature for face 

integrals in 3D case with many less nodal operations based on analytical shape functions.  

The analytical shape functions on the nodal points, which are to be used for flux 

reconstruction in the flow solver, have been pre-computed by using symbolic software such 

as Mathematica.  The major contributions from the present author focus on the core parts of 

the 3D quadrature-free SV method, which include 1) found the complicated connectivity in 

3D partition (linear, quadratic, and cubic) of a SV cell, which includes sub-faces, nodes, sub-

cells (CVs), flux directions, and orientations relative to the neighboring cells; 2) successful 

computed those complicated shape functions for each node.  Also the Korivanona’s efficient 

method to deal with curved boundary has been coupled into this quadrature-free SV method. 

4.  High-order mesh generation for 3D hexahedral mesh.  This novel and fully 

automatic algorithm guarantee to resolve the self-intersection problem for high-order 

quadrilateral or hexahedral mesh with strong robustness.  The algorithm also offers the 

advantage of correcting grid self-intersection without changing the basic aspect ratio of the 

original grids or degrading the original grid quality. 

For the future work, the above limiter and implicit method could be tested with and 

applied to the shock and boundary layer interaction problem, hypersonic viscous flow, or 

unsteady viscous supersonic problems, etc.  Our preliminary result from the Spalart-Allmaras 

(S-A) turbulence model shows that the present implicit solver is promising for turbulent flow, 

but more investigation is needed to overcome the instability in S-A model computation and 
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obtain better convergence.  Also the present methods could be coupled with other turbulence 

models or LES/DNS methods.  To promote a more efficient use of computer resources, the 

present methods could be applied as a smoother in a multi-grid approach. 
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